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FOREWORD

For several reasons, the publication of this report was postponed for several years.
Its contents were summarized at the time of this author's oral presentation at DTRC in
July 1985, reflecting the state-of-the-art up to 1984. The manuscript of the written
version was completed in August 1987 and is now to be published five years later in
1992. During these years the state-of-the-art has made considerable progress, and this
author finds the "review" to be insufficient, especially in Part 1II because of the recent
works of several researchers. In order to update the report this author has added a
"Supplement of References," (Refs. 101-124) listing publications that have appeared
since 1984, together with some other publications that he had failed to refer to in the
original manuscript.
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PREFACE

The David W. Taylor Lectures were initiated as a living memorial to our founder in
recognition of his many contributions to naval architecture and naval hydrodynamics.
Admiral Taylor was a pioneer in the use of hydrodynamic theory and mathematics for the
solution of naval problems. The system of mathematical lines developed by Taylor was
used to develop many ship designs for the Navy long before the computer was invented.
He founded and directed the Experimental Model Basin; perhaps most important of all,
he established a tradition of applied scientific research at the "Model Basin" which has
been carefully nurtured through the decades and which we treasure and protect today. In
the spirit of this tradition, we invite an eminent scientist in a field closely related to the
Center's work to spend a few weeks with us, to consult with and advise our working staff,
and to give a series of lectures on subjects of current interest.

Our tenth lecturer in this series is Dr. Yasufumi Yamanouchi who is currently
Technical Advisor to Mitsui Engineering and Shipbuilding Co., Ltd. Dr. Yamanouchi
graduated from the Tokyo University in 1943 and received his Dr. Eng. from there in
1962. For many years (1946-73), he served with the Governmental Research Institute on

Ship Technology, that changed its name from Railway Technical Research Institute
(1946-50), then to Transportation Technical Research Institute (1950-63), and finally to
Ship Research Institute, Ministry of Transport. He was Head of the Ship Performance
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Division (1962-63) and Head of the Ship Dynamics Division (1963-69). then Deputy
General Director (1969-72) and finally Director-General of the Ship Research Institute
(1972-73), Ministry of Transport in Tokyo, Japan. He joined Mitsui Engineering and
Shipbuilding Co., Ltd. as Senior Deputy Director, advancing to Technical Director upon
his retirement in 1983. He contributed to the construction and organization of a new
research laboratory, and was the first General Manager of the Akishima Laboratory of
Mitsui from 1975 to his retirement in 1983. He was Professor at the College of Science
and Technology (1982-89) of Nihon University in Tokyo, Japan.

Dr. Yamanouchi has had a long and distinguished scientific career, with pioneei ing 5
publications on ship dynamics, ocean waves and stochastic processes. He is no stranger
to the United States, having done research at the Davidson Laboratory of Stevens Insti-
tute of Technology from 1957-60 and having served as Visiting Professor at the U.S.
Naval Academy during 1984-85. We are most honored that he agreed to be a David W.
Taylor Lecturer.
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ABSTRACT

In Part I, the general procedures of the conventional method of correlation or
spectrum analysis of a random process (nonparametric method) are reviewed, stressing
the statistical reliability of the results. A few suggestions for improving the coherencies
are given. In Part II, the characteristics of AR. MA. and ARMA models are discussed.
The model-fitting technique supported by AIC criteria is introduced, with the examples
of application to the seakeeping data. In Part III, the statistical treatments of nonlinearities
in random process analysis are summarized and reviewed. Conclusions are given, and
future work is proposed.
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CHAPTER 1

INTRODUCTION 3
1.1 PROLOGUE

In the summer of 1951, a group of research naval architects who were scheduled to
be on board the cargo ship Nissei-Maru cruising the Pacific from Japan to the United
States was discussing the design of a system for measuring, recording, and analyzing ac-
tual ship performance data. Such a system was needed for the first large-scale I
cooperative testI organ'zed by the Japan Towing Tank Committee (/TTC) of the Society
of Naval Architects of Japan (SNAJ) and scheduled to start at the end of the year. to pro-
vide a basis for the post-World War II study of hydrodynamic ship performance in all the i
laboratories and universities in Japan.

To find the relationships between ship's propeller revolutions, shaft horsepower,
modes of motion, rudder angle, and so on, we decided to record, simultaneously and as
accurately as possible, as many elements of ship performance as possible. Such measure-
ments would provide an overview of the rcsponse of the ship. Many practical limitations,
such as budget constraints, had to be considered, however. In addition we didn't know the
real limits of the accuracy of these kinds of measurements, nor did we know how to
choose the proper duration of observation times. After lengthy discussion, it was decided
to record each type of measurement for three minutes. U

Very few naval architects at that time had a good knowledge of probability or of
statistics. We did not know how to analyze the data taken at sea, and we did not know
how to estimate the ensemble characteristics of performance from a single sample obser- £
vation. The simultaneous records of the averages of the 3-minute responses gave us
valuable knowledge of actual sea performance, but we realized that simple averages
sometimes cover or conceal important information. For ship oscillations, of course, mean
values are not significant, but this author could not be satisfied with merely noting the
average frequency and mean amplitudes.

During the test, the author2 was responsible for measuring the ship's relative speed
and developed a new type of ship speed meter, based on an idea of Dr. Shiha. This new
meter measured the frequency of Karman vortices produced behind a triangular cylinder
towed by the ship and gave instant indications of speed variations. Although the towing
point was selectcd to minimize the effects of pitching, heaving, and rolling, these moT :ons
did affect the speed of the towed body. The objective was to eliminate the effects of all
motions except surging and to derive from these records, by some method, the real varia-
tions in the ship's speed relative to the water. The author lawer found that an advanced
technique of multiple input analysis would have been useful.

After the test at sea, we continued to look for methods for analyzing ti': data and I
found a stochastic process analysis used in weather forecasting to preaict temperature,
humidity, precipitation, and so on. The author started at once to study time series analy'sis
and tried first several kinds of periodogram analysis and then correlogram and spectrum I
analysis.3 Because of the poor communications in the engineering and scientific fields in
Japan at that time (even five years after the war) we had very little information about the
outside world until 1954 and were unaware of the pioneering work of Dr. M. St. Denis
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and Prof. W. J. Pierson Jr.4 in 1953. We had to start on our own independent of the
achievements in the USA.

1.2 PURSUING THE IMPROVEMENT OF COHERENCY FUNCTIONS

After the bases for the mathematical and statistical theories were established by N.
Wiener,5 '6 J. L. Doob, 7 C. E. Shannon,8 S. 0. Rice,9 and others, mostly in the 1940's. the
stochastic analysis techniques were applied in many scientific and engineenng fields
besides communications and control engineering. These techniques were adopted rather
early in the analysis of ocean waves and of a ship's response at sea. This method has been
pretty well formulated by the efforts of oceanographers like G. Neum.,az,1°' W. J. Pierson,
Jr.,"1 M. S. Longuet-Higgins,12 D. E. Cartwright and M. S. Longuet-Higgins,1 3 and by
the pioneering work of M. St. Denis and W. J. Pierson, Jr., succeeded by E. V. Lewis, 4

and J. F. Dalzell and Y. Yamanouchi, 15 and is now rather popular with us. We now know
that, in practical applications and when applying certain theories, a few statistical consid-
erations are necessary in the numerical computations in order to get reliable results.

In Part I, the author tried to show the problems encountered in sample computa-
tions, in the so-called correlation method that are also closely related to the basis for
model fitting techniques (that is, the parametric method treated in Part H) and reviews the
conventional nonparametric method. The author did not intend to go into detail about the
analysis technique.

The coherency function, if properly calculated, is a good index of the extent to
which spectrum analysis, as a linear process, is valid for application to a stochastic pro-
cess. A few results of this author's efforts in this field, presented later in Part I, are related
to improvement of the techniques for obtaining a good estimate of coherencies.

1.3 TIME DOMAIN CHARACTERISTICS

Time series analysis is sometimes called spectrum analysis, thus showing that esti-
mation of reliable spectral functions is very important in the analysis of time series.

Spectral functions are surely powerful functions which provide good information on
a stochastic process and also resolve the tangled relations of convoluted types in the time
domain. However, because of this fact, and also partly because (auto) correlation did not
appear in an important way, in St. Denis and Pierson's pioneering paper,4 rather little at-
tention has been paid by naval architects to the time domain relations over the past few
decades. From his first involvement in this study, this author has thought that time do-
main functions deserved more attention and has made some efforts along this line.

Of course spectral functions and correlation functions are actually the same function
expressed in different ways. Sometimes, however, in sample computations, applying the
time domain expression helps us understand the characteristics of the stochastic process
better, because we are accustomed to expressing the physical prL tess by differential equa-
tions that are expressions in the time domain. The time domain expression of stochastic
processes helps us in the analysis to use already known characteristics of the process.
Moreover, the correlation window operation in the sample computation is just a multiply-
ing operation, whereas the spectral window operation is now an entangled convolution
operation that is more complex in real sample computations. In sample computations,

3



U
I

consideration of the windows is very important and also a troublesome problem to get
reliable results.

Parametric estimation of the spectral function, explained in Part I1. is a method of I
fitting a certain statistical model to the process to be analyzed and then estimating the
parameters of that model. This method is based on time domain characteristics, and the
model fitted is closely related to the equations of motion of the process itself. The method I
represents a different approach to spectrum analysis and, this author believes, that is a
promising one, supplementing the conventional nonparametric approach. treated in Part I.
So, in Part II, several types of discrete parameter models will be introduced in detail, and I
then the results of application of the model fitting method to the analysis of seakeeping
data will be shown. By this method, the actual response system, in which the output is fed
back to the input to some extent, can also be tackled. This kind of system has been hard to I
be analyzed by the conventional method.

1.4 TREATMENT OF NONLINEARITIES

One of the reasons for low coherencies in linear spectral analysis is the existence of
nonlinearities in the response or in the input. So in Part M, the treatment of nonlinearities
in process analysis is reviewed. One of the greatest achievements in this field for the anal-
ysis of seakeeping data is due to John F. Dalzel1' 6. 7 in the application of polyspectra.
This application will not be described in detail, except the basic idea, of this treatment but
another review of the treatment of nonlinearities will be given, to make clear the mutual
relationships of these several different approaches to the problem. In addition, the treat-
ment of nonlinearity in response characteristics during one trial has been introduced in
Section 3.4 in Part I, as an example of multi-input single-output analysis. £
1.5 SCOPE OF STUDIES

In statistical studies on seakeeping, there are roughly two kinds of applications. One
is based on the invariant characteristics of a ship itself, and its behavior is studied statisti-
cally, assuming the excitement from the environment is also stationary. The other
involves the macroscopic probabilistic distributions of seakeeping behavior, assuming a
variety of changes in environmental conditions. The former is sometimes called short-
term statistics, and the latter, long-term statistics. They are, of course, closely related, and
the short-term statistics are usually used as the basis for studying the long-term statistics.
Here mostly short-term statistics will be treated.

II
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PART I

A REVIEW OF SPECTRAL ANALYSIS THROUGH PERIODOGRAM
(NONPARAMETRIC SPECTRAL ANALYSIS)

To clarify the problems and difficulties encountered in sample computations and
make them the basis for further discussions, the rough scheme of the techniques of spec-
trum analysis (through periodograms, the popular nonparametric method) will be

* reviewedfirst in Chapter 2. Then some ideas proposed by this authorfor solving these
difficulties will be summari:ed in Chapter 3, Part I. Many text books, 1&-23 especially the
comprehensive one by Priestley,? were used as references in Chapter 2.

CHAPTER 2

3 BASIC PROCEDURE OF THE SPECTRAL ANALYSIS AND
THE PROBLEM OF SAMPLE COMPUTATIONS

3 2.1 RANDOM PROCESS AND ITS CHARACTERISTICS

Here the general continuous process on t is expressed by X(t), its realization as x(t),
and the probability density distribution function related to this process as p,(x). The gen-
eral discrete process is Xt, its realization is x,, and probability distribution density function
is pt(x). Then, as expected values,

5
mean [X(t)] = E [X(t)] = f x(t)p(x)dx =#(t) (2.1)

-00

1var. [X(t)] =E [{(Xt) - ,sq)}2] f [x(t) -g:~)]2 pt(x)dx = cr2(). (2.2)
-00

SUsually, the probability density distribution function pt(x) is a function of t ; accord-
ingly, the mean/u(t) and the variance u2(t) are also functions of time.

3 Joint probability density distribution functions, p,,,,,3 ... 4,(X1,X 2,X3 .... x,) exist

for all n,n = 1,2 .2 . n,(n --* c) and all Pt,(Xl),Pt 2(X2), .. .. ; p 1, 2(xx2)...

Ptjt 2t3(Xl,X2,X3), ... ; .... are defined as their marginal functions.
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Theoretically, if all the joint distribution functions of all orders

pI1(x1),p,,(x 2 ), • • • I

Ptt 2(Xl, X2),Pt1 t3(X2 ,X3),....

Pt112II(X1IX2,-X3), "••"

P112t6 . . . tn(X1 ,X 2 , X3, . . . X.) . .......

are known, the probability structure of X, is completely specified. 3
2.1.1 Completely Stationary

Pt1t2 . . .t. (XX2, . . . . Xn) = Pil+k,1t 2+kl . . . .+kl , (X1,X2, • .Xn), (2.3) I

for any tl, t2 . . .. . . t. and any k, this process is completely stationary.

2.1.2 Stationary Up to Order m I
In this case, the joint moment up to order m should be the same.

E[[X(tl)}M, {X(t 2)IM, ...... {X(t .)1M -] I

= E[{X(ti + k)}m'{X(t 2 + k)} M2....... .. {X(tqR + k)} M2], (2.4)

for all positive integers m I, m2 .... m, I
where

mI +m 2 + .. .Mn - m. 3
2.13 Stationary Up to Order 2

Especially when the order is m = 2, the process is called weakly stationary. When I
the probability density distribution functions are Gaussian, they are completely deter-
mined by the means, variances, and covariances of two variables, and accordingly they

are completely stationary.

2.1.4 Ergodicity

When the ensemble of the averages across the processes converge to the corre- 3
sponding time averages along the process over period N (when N tends toward infinity
and the mean square is consistent), the process is called ergodic. The ergodicity is a more
strict condition than the stationality as is shown in Fig. 2.1. 3

6



EVOLUTIONARY

STATIONARY UP TO 1ST ORDER
ERGODIC UP TO 2ND ORDER

STATIONARY UP TO 2ND ORDER

COMPLE'TELY STATIONARY
AND ERGODIC

Fig. 2.1. Stationarity and ergodicity.

For example,

R(r) = F [X(t)- X(t + r)]

= =f: Jx(t)x(t + r)p(x,, x+r)dxjxt+r

=ln x(t)x(t + z)dt. (2.5)

2.1-5 Summary of Gaussian (Normal) Probability Distribution Functions

For convenience, the Gaussian probability distribution functions for various num-
bers of variables are summarized here. For a single variable,

3 p(x) = (2;2)1/2 exp 1 ( x2 (2.6)

Normalized by z = (x -,ux)/Iu,

1 _

p(z) = = e 2. (2.7)

For two variables X and Y

7



_ _ _,U__21U,

exp ý ý,x/I2 X-/4j )()-'- y) + -1 ,4Y r)1 (28

IA A A

Here,I

[Yy YyyJ [QU,•y cry I = a(I _-L2), (2.9)

Y. =E[X -X] U.2 yy =E[X-Y1 =Qutiuy

Yyy EIIY -Y] -ay
2  y yx =E[Y -X] = Qcyox (2.10)3

P. [fxx]_1 1[yyy -ryx] 1L e.~~
[px y J y F [y] x Y r Y G] - Lo [- eaU.ay a;]

(2.11)1

For n variables X1,X2 . . . . . . . . X,,

p~xlx2.......x) =(27r)n/ 2 A"12  -2 .i d(x 1 -iui)(Xj -, (212

8£
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where

A = ]z =det(YX)

YX= 10111 (2.13)

and a'j is an element of inverse matrix, so that

P(h1,X2, ..... x.) = (2r)7/2A1/ 2 exp (x-,s)' " (x-./)J. i,2.14

2.2 PROPERTIES REQUIRED FOR ESTIMATOR

The following properties are required for the estimator of some statistical value.

22.1 Unbiasedness

As the number of samples n tends toward infinity, for the estimator 0 of real 0,

bias(0) = {E(0) - 061 - 0. (2.15)

2.2.2 High Relative Efficiency

If we suppose that both estimators 6,,06 are unbiased, then the higher the

rel. effic. = var. (0 1)/var. (B2) (2.16)

is, the better estimator 61 is than 02.

2.23 Small Mean Square Error

Mean square error is defined as

M2(0) = E[(6 - 0)2]

= E[{16 - E(6)) + {E(O) _ 01]2= [I. 2 E6 1
E(}] 0)()- 1 + 2{E(6^) - 6}E[6^ - E(6)]

= var. (0) + b (0), (2.17)
^ A A

which should be small. When M2(0 1) < M2(62), we adopt 01 as better than 02 .

9
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2.2.4 Consistenc-

As the number of the samples n tends toward infinity, var. (8) -- 0. and bias 3
b 2(9) -- 0 must be satisfied. Then the mean square error M 2(W) - 0 also stands and is

called the "mean square consistency." 3
22.5 Sufficiency

The estimator 0 must contain all the information X1,X2. . . . . X, in the sample,
relevant to the estimator of 0

0 = 0 (XI.X 2 . . . . . x..  ). I
2.3 AUTOCOVARIANCE FUNCTION AND ITS ESTIMATES

When the process X(t) is stationary up to an order of 2, the covariance function

coy. IX(t) X(t + r)] = E [{X(t)-!u}{X(t + r)-,u}] - R(r) (2.18) 3
is a function ofr only. Then, e(r) = R(r)/R(O) is called an autocovariance coefficient, 3
and

R(0) = E [{X(t) -A}2] = Var. [X(t)] = or2. (2.19)

When the process is real valued, R(- r) = R(r) as in Fig. 2.2, and when the process is

complex valued, R(-r) = R*(r). This functionR(r) is a measure of similarity in a sense, 3
and is also a measure of the memory of the process. R(r) plays a big role later, in the
parametric analysis in Part II, in identifying the statistical model that wil fit the process.

Meang, variancea 2, R(r), and e(r) are constant by t. I
I

I

Fig. 2.2. Autocovariance function. !

I
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2.3.1 Estimates of R(r)

For the discrete parameter process xt,

R(r) = E [(Xt-/U)(Xt+r -1,tr)]

= E [X,'Xt r], (2.20)

when/ut = #,+r = E[Xt] = 0.

23.2 Unbiased Estimate

Instead of -averaging the ensemble, take the time average as

N ] N-IrtR 0(r) = 3 (Xt-Xl) (Xt+r--X) (2.21)
N-Inr

where r=0, ± 1, ± 2 ........ ± (N-1).

If we ignore the effect of estimatingu by X, then R'(r) is an unbiased estimate of

R(r), because

E R°r)_ 1 N-frI

E [R0(r)] = N- Irl E[(Xt-U)(X,+r-,L)]

t=l

I N-Iri N-Irl
I R(r) - R(r) = R(r). (2.22)N- Irl - =N -Irl

23.3 Biased Estimate

On the contrary,U
R(r) = -N (Xi -t)(Xt+ii -,U) (2.23)

is a biased estimate, because

E[R(r)] =• N R(r) =.N (N-Irl) R(r) I N1 R(r)

= R(r)- -I- R(r), (2.24)
N

I
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biased by (Irn/N) R(r). WhenN -- o, E[R(r)] -- R(r), and is therefore asymptotically

unbiased. 3
By statistical mathematics, we can get

var. [R0(r)] -* O(1/(N-Irl)) (2.25) I

var. [h(r)] 0(1/N). (2.26) 1
3

1. When r is small relative to N, the difference between R0(r) and h(r) is

small, and the bias of [R(r)] is also small.

2. When r becomes large relative to N and approaches N-1,

bias [R(r)] -- R(r). However, when r -. o, R(r) -- 0. Therefore, when

N is very large, the bias remains small at all r.

3. When r - (N- 1),

var. [R0(r)] - 0(1) (2.27) I
var. [h(r)] 0(1/N). (2.28)

Therefore, the tail of correlation R°(r) shows a wild and erratic behavior. Also, from

statistical mathematics, cov. [R(r) R(r + s)] was computed and fairly high correlations

between neighboring points were found when s is small. When r tends toward infinity, I
R(r) -. 0. It can be concluded here that R(r) will be less damped than R(r) and will not

decay as quickly asR(r). 3
2.4 SPECTRUM ANALYSIS

The spectrum function decomposes a time varying quantity into a sum (or integral) 3
of sine and cosine functions.

2.4.1 Spectrum for Various Processes

a. For Deterministic Periodic Functions-Fourier Series

For periodic functions with period T,

1
I



X(t) = a, + an cosT + b, sin (2.29)
n=l

3 where

2TU 1 fVI ntA
anT = J)X\t) cosT" d

I T
7'T 2 

(2.30)

Sbn =-T r X(t) sin - d" .

I r2

The a, and b, functions are called Euler-Fourier coefficients. Equation 2.30 is
;rnt . ;nt

based on the orthogonality of cos s, sin TT T

For the existence of an, bn, and for the convergence of the series, the conditions

S2 2

f X(,>ld, < o. f L,>t)12, < o (.2.31)
IU_. __

2 2-

are sufficient.

Replacing a., bn by Co = a0, cn = [4L(an + b)], gives

3 the total energy [- T/2 to T/2] as

* J X2(t)dt= T[4a2 +2(a + b2)] T( c2n) (2.32)
-i-

and the total power [- T/2 to T/2] as

I1 il 13
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•, (2.33)

nI= -_t'I

cn is the contribution of the nth term to the total power. as in Fig. 2.3. 3

t POWER 3
I

3 2 1 0 1 2 3 n

T T T T T T

Fig. 2.3. Power spectrum of periodic function. 3
b. For Nonperiodic Deterministic Functions-Fourier Integral

For nonperiodic functions with finite energy as in Fig. 2.4, g
00

X(t) = X(w) eiwdo). (2.34) 3

1 I I
X(w)) = 0 X(t) e- fd v. (2.35)

[ . t AX(t) ----

00-T +Tt +
I

IFig. 2.4. Nonperiodic function with finite energy.

I
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For the existence and convergence of this expansion, conditions

f LX(t)I dr< o, JfX(t)}2 dt< oc (2.36)

cc - cc
are necessary. In this case, Parseval's Relation isI

fX 2(t)dt = 2ar f X(wo) 2dow. (2.37)

Here, as in Fig. 2.5 27rLX(w)12dW is the contribution to the total energy of those

components in X(t) whose frequency lies between w and w + dto. Accordiagly,

2rLX(wo)1 2 denotes the energy density function. In this case determining the power makes3 no sense, because when T -c c, from Eq. 2.36, power tends to 0.

I

0 1 w+dco

U Fig. 2.5. Energy spectrum of nonperiodic function.

c. For Stationary Stochastic Processes

For a single realization x(t) of X(t), as in Fig. 2.6 assume E[X(t)] = 0; X(t) is sto-

chastj-ally continuous. [R(O) = a2,,(0) = 1]

II

-T 0 T

Fig. 2.6. Stationary stochastic process with finite power.

I
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Since there is no periodicit), no Fourier series exists, and because of stational-

ity, f IX(t)Idt < c does not hold, soX(t) does not possess a Fourier integral. Thus. 3
2.r lir LX(w)12 will not exist and may become infinity. So here 3

(2. 3x8t) - T < t < I
T 0t otherwise

and the following process is introduced: I
- I

XT(t) = f XT(wo)ewtdw

X O) =XTt)e--'dt = X(t)eUdr. (2.39)

-w -T 3
Then, since the power is 2irLXY7 W)12/T instead of 2.7rLX7(w)l 2, which makes T -- ,

lira 2rlXT7tW)12 is for the total process. The expected value of this power is 3
2T

E [Power] = lir E [ 2T (2.40) U
and is defined as s(co). By manipulation,

27tX~r(wo)I 2 
_1 1=nXW1 [2,7.r(to))] r2.rxXr~o)]

2T 2T 2.7r [

- l~rT J l x 7 (t)e--tdt J Xt - r)ew('-r)dt3

I
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cc [ XT0t) XA t- r)d e-'rwdr

- I ROe~Tdr, (2.41)

*Denotes the complex conjugate.

Here,

RTlr) = X 7(t)X(t - T)dt. (2.42)
Tý- 2T-J

Accordingly, for the total

E [Power] s(o)) = hm E [ 2.7r ~\2 ]

- lir e"'E[R2 ',r)]dt. (2.43)

Since X7rt) was defined as X(t) for - T < t < T, and otherwise 0,

A X(t) X(t - Izi)dt, Irl < T
^RT<r) = 2T, (2.44)

-(T-4?i)(.)

0 Ill > T

17



I

{:IE[ f E[X(t) X(t +T)] dt= R(r)dr
2T 2

R(r) I -- Irl < T{ [ (2.45)

Il > T

As T approaches infinity,

e- w R(r)dr. (2.46)1

For the existence of s(w), X(t) must have an autocovariance function R(r) that is I
continuous everywhere, including at r = 0, and

R(T) = f e"0 r dS(ow) (2.47)

- I
O(r) = f ewr dF(wo). (2.48)-00|

This relation is called Wiener-Khinchine's Theorem. Here, F(w) is the normalized

integrated spectrum S(w)/cr2, where if s(w) is continuous and smooth, 3

S(w)= f s(ow)do, and F(w)= ff(wo)dwj, (2.49)

whereftw) = s(w)/u2. -2 -, ,

I



I
The properties of F(w) and f(w) correspond to those of the probability density and3 probability density distribution functions, P(w) and p(w), for continuous distribution.

2.4.2 Spectral Representation of the Stationary Random Process

Instead of using the Fourier integral, the stationary process is more generally ex-
pressed by the Fourier Stieltjes integral as

X(t) = J ewdZ(w), (2.50)II-
where dZ(w) is in the order of 0(,/--) and is larger than do. dZ(w) and dZ(w') are un-

correlated, that is they are orthogonal to each other

E IdZ(W)12 = dS(o)). (2.51)

3 When the process has a purely continuous spectrum, from Eq. 2.49, rewritten as

dS(w) = s(w) do), (2.49')

3 E [IdZ(w)12] = s(w)cdw = AS(w). (2.52)

For a real valued process,

i R(-r) = R(r), (2.53)

* and

s(wO) = cos wz R(r) dr f coswr R(r) dr. (2.54)

-00 

0

3 s(w) is an even function, and

Ss(-() = S(O0). (2.55)

Therefore,

R(z) f coswz s(w) dw = 2f coson s(c) dci. (2.56)

I 19 0
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2.4.3 Spectrum of Discrete Parameter Process, Aliasing

For discrete process {XI},

1. R(r) are defined only for integer values of r, r = 0, + 1, + 2.

Therefore

1
S((O) = 1 e--wr R(r)

r r --

o2-7 nI R(r) cos rw. (2.57)

2."•'+ r=1

Here At, the time interval of the discrete process, is assumed to be At = 1. If 3
At* 1, changew into w' =ow/At; then

s(w') = s(O)) At. (2.58)

From now on, in this lecture note, At = 1 is assumed. 3
2. s(w) are continuous functions but are defined only for frequency -; <-

a)to :r, and are affected by aliasing.

R(r)= f eior dV(w) r=O, , ±1, ± 2 .... I

(2n+l):r x

- J erdV(o) = f exp [i(w + 2n'r)r] dV(w + 2nhar)

(2n-1)x --r

n f exp (iojr) dV(o + 2nr) ei or n dV(w + 2nr) f eir dS(w)
cc~--or .. f-- 0

(2.59) 3
Thus

S(o)) =I- V(w + 2nxr), (2.60)

I
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and

s~)=dS(w) c

S(W) = dw v(w + 27rn). (2.61)

As is shown in Fig. 2.7, at frequency Wo, the spectra not only of V(wo) but also of

v(wo - 2nm), v(wo ± 47r), v(wo ± 67,) ..... .are folded as the spectrum s(Wo), as

s(wo) = v(wo) + v(wo ± 2n) + v(wo ± 4;r) + v(wo ± 6,r) + ....

I= V(wo)+v(2.r ± w0o)+v(4r ± wo) +v(6, ± &r )+ ..... (2.61')

v(mo) +v(2Jx-. o)+ v(2.7 + Q 0o) +

Iýo
Y'(27x + coo)

-71 0 coo n 310o 0Lff- cwo, 2"t +'' co
I Wo~z~! 211Woi:

41z 2n ••+ co

Fig. 2.7. Aliasing of the spectrum.

This is also illustrated in Fig. 2.8, where the harmonic functions of not only frequency
1/5, but also of 4/5, 6/5; 9/5, 11/5; 14/5, 16/5; .... can pass through the same3 sampling point 0, as marked in the figure, atAt = 1 sec intervals (see Table 2.1).

m
U
U
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05 SEC.SEC.

f= 1/5 f 415 I f = 65 f = 9/5

Fig. 2.8. Aliasing harmonic curves of frequency 1/5, 4/5, 6/5; 3
9/5, 11/5;.. . can pass through the same

sampling points at At = 1. I

Table 2.1. Aliasing frequencies.

Wa w° 2n x 1 {2t - w° {4n - coo 6n - wo° ..
1 5 12n + w0 14n + _ 0 61r + coo

f f=t-1 1 o=4 2 _f 9 3 o=14 ..
0 n 5 (5 5~_

1 + fo=' 6 " + to = 1 1 + fo =1.
5 55

Equation 2.61 or 2.61' shows that, in cases of discrete process analysis of the

spectrum ordinate at frequency wo, the power at higher frequencies 27r ± wt,,

4xr ± wo . . . . . . . is spuriously folded on the real power atw, as in Fig. 2.7.

Accordingly, when a continuous process is to be transformed into a discrete process

sampled at time intervals At, aliasing is the most important effect to be considered. The

analyzed range of the frequency spectrum is between the Nyquist frequencies

- and - (when At = 1, as in preceding sections -;r to sr ). Accordingly,
At At

At should be small enough to avoid aliasing. Practically it is advisable to takej as7At

large as At > (1.2 to 1.5)w., where w, is the uppermost frequency of the interested

frequency component of the spectrum. Then 3

I
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At• : (2.62)
(1.2 to 1.5)we

2.5 COMPUTATION OF THE SPECTRUM FOR A DISCRETE PROCESS

Here the procedure for calculating the spectrum for a discrete process is summa-
rized. In many steps of the computations, the finiteness of the sample process, the
discreteness of the data, and the choice of parameters will affect the results statistically
and mathematically.

I~ 2-5.1 Spectrum Computation Through Periodogram

First, we take the periodogramPN(w) that is the square of the finite Fourier trans-

form F,(co) of a single realization of this discrete process.

I I F~og = I Xt e-'w', (2.63)

t=1

IPN(O•) = F,(o&)l2 = xt e-4(ot

I1 1 N 2v

11=1 12=1

setting
I it -" t

t2 - t1 + r

I N-1

N-i Xt Xt+l cos rco. (2.65)

r (N-1)

From Eq. 2.24, we know that (~)Xt Xt+11i is the biased estimate of the autocorrelation

R(r). Therefore,

I 1 N-i

PN(W) =N- 1 R(r) cos ro. (2.66)
r = -(N-1)

I
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For the entire discrete process,

1 N-I I
E [PN(w)] =-2.7r E [h(r)] cos rwo, (2.67)

which, from Eq. 2.24

1 I - 1 - R(r) cos rw. (2.68)
2 r=- (N--1)

From these relationships, the spectrum computation from the periodogram is the 3
same as the spectrum estimation from auto correlation. The Fast Fourier Transform gives
the periodogram directly through direct Fourier transfer and is statistically the same as
this periodogram analysis. Accordingly, care should be taken in selecting the spectrum
windows to be used in the F.F.T. as will be discussed later.

From Eq. 2.68 if N becomes co, surely 3
E [PN(w)] - s(w) . (2.69)

Then, from the periodogram, we can estimate the spectrum. Pjj(W) is an unbiased

estimate of s(w). Here, however, R(r) is the theoretical auto correlation, and we think the
spectrum is continuous and

R(r)= f s(wo) cos rwdw , r = 0, ± 1, ± 2,. (2.70)

Thus -

E1 N-1{ iii s(u) cos r/ du cos rwo
2x1 3

-r =- -

f N su r -IN N- IrI}jI cos r(u +w) +cos r(u -w)} £4L. (2.7 1)

Here we use the following relations on summations of digital quantities, which can
easily be proved,

I
I
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Z (N- Ir) fir) = Z fir) (2.72)
r =-( -u--Or=-u

~ sin{(+} (2.7)Ir -Z Cos r - ,( 2 1 2.3

N-I sin(u+} sin2()
S ,(2.74)

*= ~o Sin(IO) Sn

Then from these relations,

-I 1 1 1 (N-IrIcosr•
I Z- cos ro• 12 =(N - Ir) os

27r (N-1) Nr n N1

N-l u sin2(40 )1 1 1 si__

= X Cos 2 \() I Fe,(0). (2.75)- j N U=O =-uZ cos sin =2•

I This function is called the Fejer function Fv(O) and has the form shown in Fig. 2.9.

When NO--W - ,

F e,(b), near =0 - 1 N (Si- ) 2

I
I
I
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FeN w

~II

I

2n 4, 6, n r --0 N N N N I
Fig. 2.9. Fejer Kernel Function FqN(E)

Therefore, I

-0ir n "- •--2 (2.76)

Putting this function F.,(O) into Eq. 2.71 gives I

E [Ppo(w)]= s(O)- 1{Fe,(O+ 0)+FeN(@-w)) do. (2.77)

x I
Taking into account the form of the Fejer kernel FN gives

n I
= fs(QO)FeN,(O -w) do. (2.78)

When N - , ,

Fe,,(O) - 6(o), (2.79)

Fe,, tends to Dirac's delta function, and I

I
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IE [PNW)] s(4) 6(o -w) do s(o)) (2.80)

When N is finite, E[PN(w)] is a kind of filtered spectrum, filtered by the Fejer kernel

function FN.

Though the details of manipulation by statistical mathematics are not shown here,
we know that the variance of the periodogram can be calculated as

var. [PN(oj)] is on the order of s2(p), (2.81)

Ur N
I

P No = ( at p ;d0,2

and also that PN(w) follow X2, 2 distribution with degree of freedom v = 2. As the

mean and the variance of X2 are v and 2v (here 2 and 4, respectively), then the signal to

noise ratio S/N is

S mean 2
- ratio =a= = 1. (2.82)
N standard variation (2 X 2)1/2

Equations 2.80 and 2.81 can also be used to check Eq. 2.82. This S/N ratio of 1 means
that this value of PN(o) is a very poor estimate of the spectrum. Further, the fact that

var. [Pvq(w)] does not tend to 0, even when N tends to wc, means this estimate of

E[PN(w)] is not a consistent estimate of s(w).

Furthermore, at two fixed neighboring frequencies w1 andoW2, cov [PN((O 1),

PN(W2)] can be calculated to decrease by the increase in N.

These facts are reflected in the erratic and widely fluctuating form of PAW).

PN$w) may produce a spurious peak in the region in which PN(w) is large, as shown in

Fig. 2.10.

2-5.2 Consistent Estimation of the Spectrum

In the expression of the periodogram,

I
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I
EjPN((,)]

,,,'EP(w)]

Fig. 2.10. Behavior of E[PN(co)]. I
N-11IVI

PN(W) n1 N - (r) cos rc = R(O) + 2 R(r) cos r , (2.83)

r =- (N-1) r= =Il

var. [R(r)] is on the order of 0

and var. [PN(co)] is on the order of 0(1) (2.84) U
are known. The reason for the large var. [PN(w)] is, as shown in Eq. 2.83, that PzVw)

adds too many terms in IR(r). These terms are slightly correlated, but the basic effect of

too many terms of X.R(r) in Eq. 2.83 remains the same.

Accordingly, the way to reduce this large variance inPN(7w) is to reduce the number

of additions from N to M and omit the term N >> M in Eq. 2.83,

M[9()] = ± [RX (r)] cos rco. (2.85) 3

This reduction decreases the variance, and from Eq. 2.84 intuitively we find

var. [s(0(w)] is on the order of O(M/N). This can be proved by statistical mathematics,

although the manipulation is not shown here. Substituting Eq. 2.24 into Eq. 2.85 gives

I
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E [So(w)] 2 E [h(r)] cos r=

M r
1 1 - -(N R(r) cos rw - s(w), (2.86)

as M tends to - ,but more slowly than N tends to -- 0. Namely, N cc, M -- CI N
but --. also, for example as M was on the order of ,/N.M

When using the function wo(r), Eq. 2.85 is the same as,

I (N-I)

SO(W) - (- 1 wo(r) R(r) cosrc (2.87)

5 where

wo(r) = (2.88)
0 otherwise

More generally, many forms of functions w(r) besides Eq. 2.88 are proposed as

shown in Fig. 2.11. R(r) cos rco are even functions of r; therefore, if we take w(r) as

real even functions of r, then

_ 1 N-i

S(W) 2 w(r) R(r) eC-4w. (2.89)! r =-(N-1)

i
I
[I
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Function w(r) is referred to as the lag window.

w(r), R(r)
A

R(r)

AI0w..,/ ,•r))r

M 0 VVMr

Fig. 2.11. Lag windows w(6r) with R(r).

253 Spectral Windows

From Eq. 2.89,

S) = NI w(r) R(r) e-A.

r-(N-I)

As Eq. 2.66 in Section 2.5.1 shows,
1 N-1

PN(w) = I R(r)e-w, R(r) = PM4)e"'r do,
2 r=-(N-1)

so inserting these relations into Eq. 2.89 gives

f(wO) = do, (2.90)

where
N-1

W(O) = - I w(r) e-40. (2.91)
r= - (N-1)

A(w) is obtained as a weighted integra; of the periodogram, and weighting involves

a smoothing operation in the neighborhood of a. This operation reduces the contribution

3
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from the "tail" of autocovarianceR(r), which shows more erratic fluctuations than the
real value of R(r) and is statistically less reliable, as discussed at the end of Section 2.3.

As the inverse Fourier transfer of Eq. 2.91

w(r) = J eiO W(O) do (202)

r=0, ± 1, ± 2, .... (N-l); [w(r) = 0 at Irl>N-1].

Sinc w(r) are real and even,

1 N-1

W(O)_) = N-i w(r) cos rn. (2.93)
•r= - (N-l)

W(O), which is the Fourier pair with w(r), is called the spectral window function, and

w(r) the lag window function.

wo(r), given by Eq. 2.88, is one of the lag windows and is called a "truncated

window" or "do nothing window." Its Fourier transform W0(O) is from Eq. 2.73

WO(O) = 1 I Cosr[ = 2r (2.94)

£This function, shown in Fig. 2.12, - also referred to as Dijichlet's kernel function
DM(4). It has a high peak at 4 = 0 and rather deep valleys on both sides of the main
lobe. This sometimes causes harm to the computation of the spectrum and results in
some spurious negative values for the spectrum ordinates. Many studies have been made
to obtain good windows, and many different windows with different characteristics have
been proposed and claimed to be good from different points of view.

Several windows de.cribed by Priestley2 are summarized in Fig. 2.13 and Fig. 2.14
in the form of pairs of lag window w(r) and spectral window W(O).

2.5.4 Effect of Windows

Some of the proposed window pairs are compared in Fig. 2.15. They were designed3] mostly under the following conditions:

1. Wy(o) >- 0 is desirable to avoid the effect of large negative lober.
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2M2 t ()

M I
2M1 2M +1 1 M1i

22M

-271 2n 6

V I I
2M+1 2M +1 ,M+1, 2M+1

2M+MV 2Mi2+ 2M+13
(2M+1) (iM )

Fig. 2.12. The Dinichiet Kernel Function [wo(o) = DM(Of)].

R

2. f WNv(q) do = 1, i.e., w(O) = 1 from Eq. 2.92, to keep R(O) unchanged.

3. f WR(O) do < o, to make .,(W) a consistent estimator. 3
-Ht

4. WN(O)-- 0,uniformlyas N-- .
N-=

5. ---. 0 as N -- o, to ensure that W 1v•) is not too narrow in relation

IZw 2(r)I

to (- and to have S(w) an asymptotically unbiased estimator of s(w).

The effects of the spectral windows, most of them designed under the above
conditions, can be summarized as follows:

1. Bias. that was 0 for the estimator "Periodogram PN(w)," is now

I
3
I
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2M +1

WINDOWS - 1 2??

TRUNCATED PERIODOGRAM W (+) =

w(r) 1 .... Irl < M
1r 0 .... Irl > m

U . = DM(+) •2M+

-M 0 M I0
1BARTLETT's{ 1 = sin (i12)2 = FM((+)

( 1 0 - Ir2Mn Ir < M Win (+/2)

w () .0 ........ Ir>a M

2Ml

1 
1.00

m- I

DANIELL'S M/2W ... sT/M +2 2 FmIsin (ir/M) W W(+).t......

W (r) 1- r/M - Irl , < I ...

(,rn/M) M_

1.0

Mr

GENERAL TUKEY W (+)= aDM (+ - -!! /• + (1-2a) DM (+)+ aDM (+t + !Ln)

-0 6 MM it

D N-2a+2a cos ((r7r/ r )

w (r)•{ Irl 4 M M

I -MIM M-- --I 2n

1.0

W_ _ _ __ _ _ (r Ir- < M

-M M 0M2

Fig. 2.13. Various window pairs (I).

I
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WINDOWS - II

TUKEY - HAMMING 3m .W (+) = 0.23 DM(--. )+.5n M()

w()r) 0 .54 + 0 .46 cos (7rr/M) - Irl .4M 'M"j )+~~D()
w(r) 0 ............. Irl > M M 0.23 DM . 3

2,,

1.0 0.08

M '0 M -.-p r

TUKEY - HANNING

w (r) -{ 05 { 1 + cos (ier/M) ... Irlr M W (+)= 0. 25 DM (ý -) +0.5 DM(+) + 0.25 DM( +

10 ................ Ir > M MM7
_• I

11.0 
/\n-

O' r--

-M 10 M 0M

PARZEN
- 6(r/M)2 + 6(IrI/M) 3 I2•<M M12 W (+) ,', 8M sin (M+/4) 124

w (r) 2 (1 - Irl/M) 3 ......... M/2 < Irl < M M 12 sin (+ /2)

0 ............. Irl > M 3M

1.0

- M 0 M _0

BARTLETT - PRIESTLEY < r/M

w (r) 3M2 { sin(M) cosr/M) 0 .. ............... (Ml >}. /M.
(7cr)2 7r/ 3M

-M M --*-.r v 3
I

Fig. 2.14. Various window pairs (11).

I
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M
I" "TRUNCATED PERIODOGRAM

3M
4nr BARTLETT- PR IEST LEY

M • ,--DANIELL

3� B•ARTLETT

"TUKEY-HANNING

FIg. 2.15. Various spectral windows.

bia [.(w) = {.(w)- sw)}- 1 s"(w) J •b2 W(•b) do. (2.95)

Here s"(ow) is the second derivative, and this is the bias at the peak of the spectrum when

- ~s'(wo)=O0.

2. Variance, that was s2(wo) for the estimator "'PeriodogramPN•(w)" as shown in Eq.

2.81, becomes

var. [s(w)] -Ms2(o) k2 (u)da = 1-s2(°w) Z 2r, (2.96)

r=0

where (r\ r
k(u) = = w(r), u -M-. (2.97)
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When w(r) can be expressed this way, the window is called a parameter window.

3. Equivalent degree of freedom v, as the X2 distribution that was v = 2 for the 3
estimator PN(w), changes into

V = 2 (2.98)

{Z•i(r)} M fk2(u)du}

4. The spectrum window blurs the real spectrum, Fig. 2.16. Its extent depends on 3
the window bandwidth (BW) which is defined in several different ways, although every
definition tries to show the equivalent frequency range over which the smoothing is per-
formed. For a single-peaked spectrum, this blur depends on the relative bandwidths of I
the spectrum and the spectrum window. Spectrum bandwidth is defined as the frequency
range in which the spectrum shows half of the peak of the spectrum. g

I

CL, ) c) -0 0)B

S- 2hiM---- "-2 iM--

Fg. 2.16. Blur of the spectrum by Daniel's window, where the
bandwidth is 2rdM.

The resolution will be lower as the window bandwidth becomes narrower. 3
2.5.5 Expression of Confidence Interval and Precision of g(o)

1. By 42 Approximation I

3
I
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I As was mentioned in the preceding subsections, S(wD/s(w) can be approximated by

distribution, with degree of freedom v. Equivalent degree of freedom v is expressed
r by Eq. 2.98 when the window is of the parameter type.

or ly show lowpercentage

points of X2 distribution, as shown in the key in Fig. 2.17,

Prob. [x2 < a,(a)] = Prob. [ by(a)] - , (2.99)
2

S v.•(w)

Prob. [av(a) < - < bv(a)] - a. (2.100)
S(W)

STherefore, a % confidence interval is

I S(w)), V ](w) (2.101)
bv(a) av(a )

This range is shown in Fig. 2.17 as a function of v, with a, the confidence level, of
80%, 90%, or 95% as a parameter.

2. Approximation by Normal Distribution; see Fig. 2.18.

We know that when N tends to infinity, R(r) follows the normal distribution, and as

S(w) is a linear combination of R(r), A(w) also tends to follow the normal distribution.
This relation can be assumed also from the fact that, when degrees of freedom v -- ,

as N -- w, X,2-distribution tends to the normal distribution. Then, using the normal
distribution, we can get the other expression for the confidence interval, as

SOO + C(x) Vv-ar-. -S(w)). (2.102)

Equations 2.100 and 2.101 give the confidence interval as,

[1S) (2.102')
c(a) -c(a)j,,, J
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100-

60 CONFIDENCE BAND OF x2-DIST. I
40 95%
30 90-

800/0I
20 __%

I7101011

22

"DEG OF FREO1

--- • - .T-- • -- •4-

1 1_ _2 3 4 5678 1015_20251 40 60Z

S_• __ " I5

FRg. 2.17. Confidence band by X2-distribution.I

This interval is shown in Fig. 2.19 at a confidence level of 90% (c = 1.64) as anI

example, with values of the 2-distribution at the 90% level. As v increases, the confi-

dence band shows almost the same level as the one from thezX2 -distributlon.I

3. Expressions of Precision of the Spectrum EstimationI
There are several ways to express the measure of precision of the spectral estimates,!

and they are related to each other as shown in Priestly.2 3

I
I
I

S~38I
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a
2 2

S(O)-C (a) S S( (a) 1 C VAR. s(O))

Fig. 2.18. Approximation by normal distributon.

i.) p% Gaussian range of percentage error 6(w)

6w= ( v(w) +Ib(w)I (2.103)
s(w) S(W)

where v(w) = [var. standard deviation

b(w) = EI•(W)}- s(w): bias

c(p) is the two-sidedp% point of the standardized normal distribution,

Is(w)-Ps(w)I 6(w) a . (2.104)
P s(J) 100

ii.) The mear qnuare percentage error 17(w)

[EI.A W) _ S(W)}2] ______

171(o)) S2( ) j 2(w) + b2(w) (2.105),72(,/S2(-)) = S2(o,)

By Chebycheff's inequality,
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100w

60 CONFIDENCE BAND BY X2-DIST. v/av(cr)- v/b~v(aX)
-90% O NFIENC BAND BYN-DIST. 1+ 164 )J

40 -{-s'~P

1~~~~~ - 1. 64 N72S 7lO S- 7.,

20 -- _

S~I

0.5 -) -6(_s__ -'-

10.

in Gaussianadistributionr(90%elevel).

b(to) = 0, 6(t0) = c(p)i/(to). (2.107)

iii.) The signal to noise ratio introduced by Parzen24 is !

7I5!
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SNR{.(w)} = E[A(w)} (2.108)

[var. [S())]

If we use the asymptotic normality of s(w), for large N

I [ w~o)-E{.^(w)}j p~ (2.109)
r E{( ,}I J, 100'

So if we set

6(w)=c(p) [var.() ] (2.110)! s(w)

and omit the bias b(w) in Eq. 2.103, i.e., if b(w) =0 or E[!((w)] - o(w), then

6(w) = c(p) (2.111)I SNR{ ^(o)}

This relation shows that SNR {S(w)} is a simplified version of 6(w), when the bias

j of k(w) is ignored.

Also SNR can be expressed by equivalent degree of freedom v, defined by Eq. 2.98

as v = , and as 1(w) follows the X2-distribution with degree of freedom
r

v, where the mean and variance are v and 2v,

l SNR{.o)()-1 = (V)1/2

v = 2[SNR{S(w)}] 2. (2.112)

From Eqs. 2.111 and 2.112,

6 (0)) = C(p) 1 /V. (2.113)
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The relationship shows that, if we assume the asymptotic normality of the spectrum

estimate, then the proportional error 6(o)) can be estimated from the equivalent number of

degrees of freedom of the spectrum estimation v, by Eq. 2.113, p and c(p) being the level
of confidence and p/100 the point of normal distribution as

cC a) X2

- e 2 dx=10 (2.114)1f 27r 100
--c(a)

From Eq. 2.98 or Table 2.2, we know that v is proportional to NIM, and for most of

the windows 2 to 3 times NIM. If, for example, NIM - 10 to 15, then v is on the order
of v = 30. If we adopt the confidence level of p = 0.95 (95%), then c(p) = 1.96. From
the appropriate normal distribution

6(wo) = 1.96 ý2-/30 0.506. 3
This value means that the estimate of the spectrum ordinate has a proportional error in the

order of 50% for this example.
2.5.6 Choice of the Spectral Window

It is now clear that, in order to get a consistent estimate of s(w), we have to use a 5
spectral window. Several spectral windows and their effects on the estimation are summa-
rized in Table 2.2, from Priestley.23

4
3
I
I
I
I
I
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I Table 2.2. Effect of spectral windows.

I CHARACT. BIAS VAR(&o)I EQUIV. WINDOW
EXPONENT b (w) DEG. OF BANDWIDTH

q s2(oA) FREEDOM Bw

V

TRUNCATED 00 0 (MA M N
PERIODOGRAM 0: DECAY N M

INDEX

BARTLETT 1 M sIG)) 1.5 M N 6 ifMN M M

DANIELL 2 1.65 - s(() - 2- 2.0 -M2 N M M

E 2 aIT2  2(1-4a + 6a 2) (1 -4a + 6a2)-1

TUKEY 2 a s()a-GENERAL M2  x M x

TUKEY 2 0.23 --2 se(w) 0.80 M 2.52 N 2.45 -

- HAMMING M
2  

N M M

TUKEY 2 0.25 1- s"(w) 1.33 M_ 2.67 N 2.35
- HANNING M

2  
N M M

PARZEN 2 0.01 - s*((o) 0.54 M 3.71 N 3.82 -N M M

BARTLETT 2 0.99 n- s(o) 1.20 M 1.4 N 1.55 it
-PRIESTLY M

2  
N M M

The spectral windows that make the spectral estimate consistent also affect the
estimate in several other ways, as was summarized in Section 2.5.4. The most important
parameter of this window is the size of M, which determines the window bandwidth

(BW), that is by Priestley2 expressed as,

- MB. q= 3 (2.115)

I wherewr 
k(q) = lir 1 -k(u) 

(2.116)
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q is the largest integer that is a characteristic exponent of the function

k(u) k= ()-k wN-r), and the value of q is listed in Table 2.2 for each representative

spectrum window. When q = 2, as is the case for most of the listed spectral windows,
there is a relationship

b(w) is on the order of -s"(w) O2W(O)do
2 f

1 I
is on the order of -I-s"(w) 02K(O)do, (2.117)

-e, I

where I
K(p) =4 " J k(u)e-•"~du3

or k(u)= f K(O)e"ud& .

To state the relative bandwidth of the spectral windows, we must define the bandwidth B,
of the spectrum itself. Usually, B, = w2 -w w where o2 andWI are the frequency points at 3
which the spectrum shows half the maximum power of the spectrum peak as in Fig. 2.20.

0.5s ,

Fig.2.20 Spetrumbandidth

I
"4 I



I
To keep the blurring effect of the spectral window small, the bandwidth B. of the

1

window must be small compared with the spectrum bandwidth Bs. B, = B, is a popular

guide.

As explained in Sections 2.5.2-2.5.5 the following tendencies, as shown in Table
2.3, are now clear.

Table 2.3. Statistical effects of the change of M.

M VAR. RELIABIL!TY BIAS WINDOW-BAND WIDTH RESOLUTION

LARGE LARGE DOWN SMALL SMALL UP

SMALL SMALL UP LARGE LARGE DOWN

I
From sampling theorem it is known that, if [9o(w)] is calculated from the frequency

interval Aw = -M, s(w) is completely determined, although since S(w) is a continuous

function, it would be quite in order to evaluate it over a much finer set of points. It has

been shown that we can generally use the value Aw I -B•, for Daniel's window, where
2

2.7r .7 u wno efc
Bw =-; accordingly Aw =-. When we use Aw= -, the spectrum window effect

M M M
will be replaced by a weighted mean of the ordinates,

M 7As(o) = aiP g to + i . 2 1 8

i=-M

Values of ai for several windows are shown in Table 2.4.

This table also gives values for the coefficient proposed by H. Akaike, 25 for
minimizing the bias and variance of the estimate for the spectrum window. W2 or its

simplified form Q is generally used in most of our work, although W3 would give a

better spectrum with steeper peaks and deeper valleys. As a general procedure for
choosing the best of W, to W3, Akaike advises trying them all and, if no improvement

in spectral form is recognized, adopting the window of the lower order.

4I
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Table 2.4. Coefficients cLi for various windows.

a_ 3  a-2 _-1 a0 al a2 03

TUKEY
GENERAL a 1-2a a

HAMMING 0.23 0.54 0.23

HANNING 0.25 0.50 0.25

PARZEN 0.008 0.164 0.657 0.164 0.008

AKAIKE'S

- W 1  0. 0.2434 0.5132 0.2432 WIDE

- W2  -0.0600 0.2401 0.6398 0.2401 -0.0600
- W3  0.0149 -0.0891 0.2228 0.7029 0.2228 -0.0891 0.0149 NARROW

-. 0 -0.06 0.24 0.64 0.24 -0.06

I

2.5.7 Use of the Fast Fourier Transformation (F-F.T.) Method

There are misunderstandings sometimes that spectrum analysis by the Fast Fourier
Transformation (F.F.T.) technique is completely different from getting the spectrum from I
analysis of auto correlation functions. However, Eq. 2.64 shows that this method is mere-
ly the one that gives the spectrum through a periodogram, and Eq. 2.66 shows that it is
the same as calculating the spectrum from the Fourier transform of the auto correlation 5
function.

Through the F.F.T. we get the spectrum ordinates at frequency --- , or in the range 3
-2np N

; w ;r, atthe-frequency-points -- , p=0, ± 1, ± 2, ... - -,in thedis-

22cree cse.Thi prceurecorespndstogetting -- + 1 ordinates in the frequency range

0 toxr, or N+ 1 ordinates in the frequency range -;r to x1. It is the same as using
NI

M = N for a rectangular spectrum window and as a result, the individual spectrum ordi-
2

nates of N+ 1 are so unreliable, statistically, and th, variance so large that SNR = 100%, 1
2

equivalent to a degree of freedom v = 2. Accordingly, the same considerations on the
use of the spectral window as were necessary for auto correlation methods are necessary
for the F.F.T. method after getting the "raw" ordinates at N + I frequency points. Com-
mercial programs or even a specialized spectrum analyzer through F.F.T. are now

4



available, but sometimes they do not say anything about "windows." We have to be care-
ful in our choice of the window to be used in the analysis to obtain a reliable spectrum.

We can cut the number of computations from the order of AN2 for autocorrelation

methods, N being the number of data, to N(r1 + r2 + . . . r.) for the F.F.T. method when

N is factored toN = r, • r, • . . . . ro. Very commonly, N = 2, is used and then the num-

ber of computations is on the order of 2pN for F.F.T. For example, when N = 1024 = 2 10,
the number of computations is reduced from the ordkr of 1,000,000 to 20,000, or about
1/50.

The spectrum function i; a powerful expression for showing the characteristics of a
time series. However, we sometimes need the autocorrelation function to find the proper
pair of lag and spectral windows, to decide the size of M compared with N, or to find an
adequate statistical model from which we can go to the parametric analysis of the pro-
cess, as will be mentioned in detail in Part 11, Chapter 5.

The autocorrelation function R(s) can be obtained as the Fourier transform of

s(w) or as the periodogram PN(w) where, from Eq. 2.90,

00

S(W)= J Piv~) WN(w - 0) dob.

j-00

From Eqs. 2.64, 2.63, and 2.66,

PN(wop) = IFA(wo)I 2, (2.64')

1 N N
F.,(wp) = p _ Xr e-/,p = 0, 1, . . . - (2.63')

1=1 2

1 N-1

PN(wP) = Z- I R(r) e-,r. (2.66')
2r=- (N-1)

NAnalogously, from Eq. 2.64' or from Eq. 2.66', we see that from-- ordinates of PN(wp) it

A Nis impossible to get N values of R(r), r = 1, ... N. We get only R(r) values at r < -.
2

In order to get R(r) values at r = 0 to N, we need N ordinates of the spectrum or the
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I
periodogram PN(wo). To make this possible we need N more data, and that can be real-

ized by adding N O's to the original data, as xo . . . . . xNIj, 0, 0, 0 ..... 0. 3
N N

2N3

In this way the F.F.T. method can also be used for computing the correlation function
from the spectrum ordinates at N frequency points as in Fig. 2.21. 3

DATAl

j 4NUMBER

_ _ N I I
o I i I I

N

I IN I2 FREQ. POINTS
I • I

I I I N FREQ. POINTS

"" 4 +-------- ItI

Fig. 2.21. Frequencies to calculate the spectrum.

2.5.8 Filtering I
As was mentioned in Section 2.4.3, in sampling a continuous time series for compu-

tation of the spectrum, we have to pay attention to aliasing, and the sampling interval At
should be small enough to avoid the aliasing. We must also be careful about the leakage
of power or the blurring effect through the spectral window, especially when the spectrum
has sharp peaks or steep valleys, because the spectral window acts as a smoothing filter.
Besides, sometimes we are especially interested in the spectrum over a certain range of
frequencies. Then the filtering technique is helpful in dividing the power of the spectrum
by the frequencies or in modifying the shape of the spectrum to a shape more easily han-
died.

Generally, for a continuous process, the filtering effect can be expressed as

cc I
Y(t) = g(Tr)X(t - r)dr, (2.119)g

where X(t), Y(t) are the original and filtered processes, respectively, and g(r) shows the

filtering effect in the time domain. For a physically realizable filter g(r) = 0, for r < 0, the I
range of integral can be from 0 to oo. Then from the discussion in the preceding

4
I
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subsections and assuming the existence of a spectrum of X(t), Y(t) and a Fourier trans-

form of g(u),

syy(w) = IG(wo)12sxO(wo), (2.120)

cc

G(w) = f g(r)e-"'dr. (2.121)

A few samples of simple and ideal filters are given as follows:

1. Band-pass filter (Fig. 2.22)

G (w)

t
S~1.0

-'W2 -W1 0 W1  W2 -" CO

Fig. 2.22. Band-pass filter.

IG(w)1 2 = 1; forw, :5 lWI _: W2  (2.122)0 otherwise

Then

gOr - f G(w)ezatd.o =- f e(tdw

= sinm02 r-sinw('C for all r (2.123)

From the form of this function and Eq. 2.119, we need the input process X(t) for
- c < t < "o, so theoretically this filter is physically unrealizable.
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2. Low-pass filter (Fig. 2.23)

I
G (w)

t 1
1.0

cj0 0 0 O

Fig. 2.23. Low-pass filter. I
When w1 = 0 for a band-pass filter,

iG(t)12 = { 0) (2.124) 3
sintI > 0)

g(jr) = sinwo (2.125)

3. High-pass filter (Fig. 2.24) I

S1.0

W• 10 WO-- 5
Fig. 2.24. High-pass filter. I

When ao2 -' = for a band-pass filter,

IG(W)1 2 =0 I 0o -<tO (2.126) 1
1I I > 0O) 3

Also for digital processes, we can express the digital filtering by

5
I
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UkI
Y = I grX,-r. (2.127)

syy(wo) = IG(w)12 sxf(w) (2.128)

G(w) = 1g9 e-. (2.129)
r=O

3 4. Low-pass digital filter (Fig. 2.25)

3 ~1.0G)

Fig. 2.25. Low-pass filter.

3 For example, the simplest equation for this type will be

1X
Yt 1 "( ,-I + Xt). (2.130)

Then

syy(w) = IG(w)12sXY(w)

I = [I1+ e--wl s](w)

1

(={1 +cosw}sxx(w). (2.131)2

3 5. High-pass digital filter (Fig. 2.26)

I
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1.0

0.53

-IT 0 --... n

Fig. 2.26. High-pass filter.

The simplest equation for this type will be 3

yt 1(XtI-XI) (2.132) I
2

Then

sy-i= 1 - e-4ia' sX:a~o)

= { -cos wo}sln(o). (2.133)
2 g

6. Pre-whitening digital filter (Fig. 2.27)

•(•) I
sy(w)

-_T 0 II 1
Fig. 2.27. Pre-whitening filter jsyr,(0)/sxx(CO)I•I2.

If a digital filter such as

Yt = aoXt + aX,.-I + a2X,-2 . . . akX,_k . . (2.134)
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is used and the spectrum sry(w) becomes a white spectrum syy(w) = or, then as will beI shown in Section 5.4.2 of Part II,

3syy(w) = ary = lao + aIe-1 + a2e-2iw + . .. + ake-'= 12sfof(w). (2.135)

"* Then

sYX((o) = o (2.136)
lao + ale-Iw + a2e-2w + + ake-4aW12 ,

If we can find the filter that will make this spectrum completely white, that filter is
called a complete pre-whitening filter. Then from Eq. 2.136, we can find sxr'(w) from

the variance ' of the filtered process (that is uniform), and the frequency function

3 IG(wo)1 2 = lao + ale-i° + a2e-2" + . . . +ake-"l 2 . (2.137)

This tells us that finding the pre-whitening filter G(wo) is the same procedure as fit-3 ting a model to the Xt process expressed as

EI = aoXt+alXt-1 + akXt-k .... , (2.138)

where et is a completely random process with variance cry. This is the problem of AR-

model fitting to the process X(t), whiýh will be discussed in detail in Chapter 5, Part •1 of

this paper.

2.6 MULTI-VARIATE SPECTRAL ANALYSIS; SPECTRAL
ANALYSIS OF FREQUENCY RESPONSE

2.6.1 Two Variate Spectral Analysis

If there are two stochastic processes {Xi.,} {X2, t = 0, ± 1, ± 2 ...... each

weakly stationary, then Coy. {Xu1', X,.2} is a function of (t, - t2) only.

I For this stationary bivariate process, the correlation matrix is defined as

R(r) = 1 R11(r) R12(r)(
wR21(r) R22(r) (2.139)

5 where

I,
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R11(r) = E{i ~Jfi 1~-u}

R22Ar) = E[IX2,t-,U2}{* Xi+r-iL*2}j

R21(r) = E[{Xi,r./.LI}{X 2 .t+r-1J}] ...... X, leading k, (2.140)

R12(r) = E[{X2 t,-,i214Xiit+r-/.Ii] ...... X, leading Xi

Ri (- r) = R' 1(r)

(2.14 1)3

R12(r) = R I (- r)

*Dntsthe complex conjugate.I

eoli(r) = RI:(r)3

e22(r) = R22(O) (2.142)

Q021(r) = R2 1(r) 1/

Thben the spectrum matrix is{R(O R(0}/3

S(wO) =s 11(O)) s1 2(w) (2.143)3

where
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s11()=- 2r

S22(W) = 1 R 22(r)e-'rw
r (2.144)

3S 21(0o) = 3_-_r R 2,(r)e-' ..... X1 leading X2

1

Sl2(0)) = I R 12(r)e-iw ...... X2 leading X1.

For the spectrum to exist, the correlation function must be absolutely suminable, for
example,

I IR2zr)I < 0. (2.145)

I By spectral representation, using the Fourier-Stieltjes form,

a X
X't1  f e,1 AdZT(c) X2,t f eiuodZ2(W) (2.146)

-i -- X

IE[dZt(w) dZ,(to')] = 0'o, w W (2.147)
$1(to)dto, o)= w'

Ik

E[dZ•2((o) dZ2(o,')] = f ' 0, W (2.148)

I S2 2(w)daw, 0w = '

dZI(w), dZ,(o'); dZ2((o), dZ2(w') are orthogonal, respectively, and also cross orthogonal,

E[sZ(,) dZ2(wo 0, ( =O' (2.149)
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E[dZ2() dZ1((')] = S) e, w . (2.150)-1
I= to

Inverting Eq. 2.144 gives for the two variate process I
R21(r)= f eirw s21(€)dw° R12(r)= f etrw s12(C)dw)" (2.151)

aersi~~w -: I
as was for the single variate process

R11(r) = J eiirsj(wo)dto, R22(r) = f eirs 22(to)d). (2.152)

IIWhen X1 leads X2, Eq. 2.144 gives

1 £
S21(0o)='r = R2(r)e-rw.

r ='- c° 
I

Here, since R21(r) is not symmetrical on r = 0, the cross spectrum S21(w) is a complex
function, 5

= Co2 1(0)) + iQu2 1(0)), (2.153)

Co21(0)) =-- JR21(r)+R 2,(-r)I cosrco, (2.154)2Si

Qu 21(wo) - I{-R21(r)+R 21(-r)} sinrwo. (2.155)

Co21(W) and Quz1(W) are the co- and quadrature-spectra ofX1 (r) and X2(t) when

Xl(t) leads X 2(t). 3
Thus the cross spectrum is expressed by its absolute value and argument as

5
I
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IS21(o)l = {Co (to) + Qu 2(to)} (2.156)

Arg [S21(Wo)] = tan-1 C021(0)) (2.157)

and

I dwIs21(to)l eA•r[sI2(W)] = s21(to)dw o

3 = E[dZ'j(to) dZ2(w)]. (2.158)

In this case the coherency function 721(co) is defined as

s 21(to) cov{dZlto) dz2(to)}

Y721(=) - ( )v•{ el(c) dZ2(O)I2 (2.159)
{S1 1(w )S22(W )1 1/2 Va~rfdZI(CI)1j Var~dZ2(cO))j1 "

3 Thus 721(0) is the correlation coefficient of dZ*z(to) and dZ2(o). Here,

3 0 -- 1/21(0)1 -- 1 at all wv. (2.160)

Usually IY'21((0)1 or ý/21(0)12 is called the coherency function and shows the extent3 to which X2, t and X1, t are linearly related.

2.62 Linear Responses3m Suppose there is a linear system, X, being the input, Y, the output as in Fig. 2.28. If

Go3t I= g, gX 1.. (2.161)
r= -00

3 (g,1 is called the impulse response function. If this is physically realizable,

3 g,=0 for r <0.

5
m
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INPUT 
OUTPUT

xt V!t • II
i LINEAR SYSTEM i

I
Fig. 2.28 Linear system.

However, we had better treat g, for- c- + x, because sometimes X, itself does 3
not express the real cause of Y, and g, can even be non-zero at r < 0. We assume, for the

impulse response, 3

-IgI < - 00 (2.162)

Then

s'y(a9) = IG(w)12 sXX(wo), (2.163) £
where

G(w) = g g ior. (2.164) 5

G((9) is called the transfer function or frequency respon.e function of Yt to X,. For

syy(w) to be finite in total power sy,(w)dw < c, smx(w) must be a bounded function

ofw and f IG(w)12dw < oo. Accordingly, by Parseval's relation,

-C c

- c I

Using Eq. 2.161 gives

I
I
I
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Ryx(r) = E [XrtYi.r] = g, E[X,' Xtr-r]I "r=--OC

I ' g, R)(r-r), (2.165)
I T=_x

and therefore

I s2w) = 2 e-R (r)
r =

g, e- 2 I Rx(r - t) e"(U)(

=G(I) sxx(=). (2.166)

Accordingly,

G(o) = -- •. (2.167)

From Eqx. 2.163
FiG(o)2 = sYy(w) 

(2.163')

These equations show that, from the spectra of output and input, we get the IG(w)1 2, the
response amplitude function, but if we need the complete response function including the
phase relation, we have to use the cross spectrum syx(w) as shown in Eq. 2.167.

In this ideal linear case

2 l1 w) Ls<)1 IG(w)12

y~w) 2 = {sii(w)) S22(001 -I~)1 . 218

The coherency ly(w)I2 should be 1.

2.63 Linear Response in the Presence of Noise

When noise is added to the output Y1, as in Fig. 2.29, where we assume N, is real-
valued, zero mean, uncorrelated with Y, and with X,.
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Yl Y -N=Ig,,,N (2.169) 1

NI

-.---t LIEA SY"

Fig. 2.29. Linear system in the presence of noise.I

T h enR y'X (r) = E [X1* Y t;+r]

- gr E[Xt* X,+r-r] + EIXi* Nt+r](.10

I gr R.(r- -c),

T ~ ,"IT = 0. 2.71

Therefore 
EX*N+]=0 

211

SY'x(w)~ 2nIegI.r-z

-G(ow)snjyw) = s~yx(o) (2.172)1

and
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G(w) = =W (2.173)

function G(w) can be obtained as the ratio OfSrx(w) to the spectrum of input sxp(o) as

was the ideal case in Eq. 2.167, because srx(w) is not affected by the existence of noise

Ssy'y'(o). = IG(o)I 2 sxa(wo) + SNN(WO) = Syy(w) + SNN(W)). (2.174)

Therefore, the coherency y2(w) is

•t2( ) = S2y~( ) ... (W 12"•

Y 2(0s) - ,X(W ) s _,__

sn()) syy'(ow) srr(o )

IG(ow)1 2{js~ry(0) - sNN(W)1)

1srr(0)-SNAW)1I S=(W) X srr(w)

- 1 SN = 1 -i 2 (w). (2.175)srr( ))

Here
H e r 

1 ( W) 2 = S N N ( W )

sy, y,(W)(276

is called the residual error.

These results show that it is essential to calculate the cross spectrum to get a good

estimate of the frequency response function.

2.6.4 Multiple Inputs Multiple Outputs Case

More generally for k multiple inputs and I multiple outputs, as in Fig. 2.30, the

output is expressed by

61



U

=i~ gil~x. 1 Xif- + gi X2-i- + I gi'. Xk- Ir
T r T r= -00

or in vector form, 3
Yt gt Xt-,. (2.178) 1

[Ix 1] [lxk] [kx 1]

LINEAR -

SYSTEMi

Fig. 2.30. Multiple inputs multiple outputs system. I
If the output is expressed by spectral representation, then

Y= f eiw dZ(i (w) i= 1 to 1, (2.179)

-%7

where 3
dZ)(ao) = Gi. (o))dl(jx)( ... . +Gi k(w))dkx)(co) i = 1 to 1. (2.180)

2.6.5 Multiple Inputs Single Output Case, Multiple and Partial Coherencies
A multiple inputs, single output case, as in Fig. 2.31, is a special case of Eq. 2.177. 3

6
I
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SIX2 -----------
k

II
I

FIg. 2.31. Multiple inputs single output system.

3t I 91gir XD.,T + I 92- X2t- + + I As. Xk.,..1 . (2-181)
T = -- 0 T = -- OD T=--0

I "Thus

k k 00

Ryy(r) 3 3 g3 , g,*, 6 Rij (a-- + r) (2.182)
i=1 j=l a=-, fi=-oo

3I and

k kSsyy(w) I 3 Gi(o() G;(w)) sj1 (w)). (2.183)
i=1 j=l

I In the same way,

k

S,(o) 3 G#9), sj,,o), (2.184)
i=1

3 where Ri,<T) m Rxxj(,r), sijW) SXX,(W), and sy((w) syx,(w).

The input is 
Xt [Xl,t ,X 2,t . . . . Xkj. 

(2.185)

I Then setting

3 G(0) = [G (1W), G2(0o) . . . Gk(o))], (2.186)

I
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Sxx(w) =(2.187)

[Ski SA:(W) . SlAjk(() 3
Sll(wO) S12(W) .. Slk(() G*(w) 3

syy(w) =[Gj(wO)G 2(0)) . . . Gk(w)J A (2.188)1

.Skl(Co) Sk2(0)) . Skk(w)) .G;(&))

gives3

s yy (w) = G'(w) Sxx(w) G * ((o)). (2.188)

Here G '(w) is the transpose of the vector G (w).

A lso 14i 0; 's11(w ) S12(W ) . . .. s1 k( o)i G l(w o)

SY2 S21(0)) S22((w) S2*(() G2(W)(289

LSYk(W)l Ski1 S2(O) . . .. Skk(O)j [Gk(O)j

givesI

s yx(co) = sxx (w) G (w). (2.189')1

Therefore

G (w) = s rx(0)) S YX (W), (2.190)

orU
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G1(W") snl(w)"

G2(W) Sy2(W)

s* 1 )(2.190')

I *, ,o(w
3Gk(W)- SYk(W)-

Thus the multiple coherency yjX(w) is

S YX((0) 1/ S yy(W)

I s, (0) SXY(0))

- six(w) s;y(w) - 1 G'(w), s 'x(w). (2.191)

U Here, as mentioned by L. Tick,26 H. Akaike,27 and Enochsen, 28 the conditional
spectrum S•i1(w) is defined asI

I S12"1()" = 11(0)--S22(W) 2

= S12(0) = - S11(0) Is 12 (W0)12

S22(07) S1 1(0)), $22(0)

P= S11(07){1 -Yl2(W)}. (2.192)

3 This shows the spectrum of XX 1 under the condition that X2 has occurred, that is, the

spectrum of XIX1 masked the effect of X2.

Generally, if the conditional spectrum of syx(w), under the condition that xj has

occurred, is expressed by s;. 12 ... I.. k(w), then the partial coherency is defined as

I S. 2 ..... ( )f2

YYj.12 ... k(() = S", Y..12 ... ... k( ) (2.193)3 12.... t.... . k(wj)SYY.l 2 ... t. o)

I
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CHAPTER 3

U CONSIDERATIONS ON THE IMPROVEMENT OF COHERENCY FUNCTIONS

3.1 INTRODUCTION

Coherency functions y(w) can be considered good clues to finding the extent to

which the system can be approximated as linear to the input Xt which can also be consid-

ered linear. If there is noise in the output Yt, as was discussed in Section 2.6.3, the
coherency function will be reduced, usually to coherencies of less than 1. It is difficult to
find the real reason for this reduction, although Eqs. 2.175 and 2.176 tell us it is the effect
of noise. Here not only noise in the output but also computational error, statistical bias,
nonlinearity of the response characteristics, and the effect of feedback are all counted as
noise in the result. All the effects that cannot be accounted for by linear, open relations
are counted as noise. The author has made a few suggestions for improving the nonpara-
metric spectrum analysis and the resulting computation of coherencies.

1 3.2 SHIFT OF THE OUTPUT IN CALCULATING THE CROSS SPECTRUM

Rii(r), the auto correlation function of a real process i(t), is an even function and3 shows a maximum value at r = 0, the origin of the lag r. The lag window applied to this
auto correlation to get consistent estimates of the spectrum ordinates is also usually an
even function and has its peak at r = 0, and w(0) = 1, as in Fig 2.11. Accordingly, R(O)

remains unchanged and then gradually decreases toward r = * M. This procedure keeps
the most reliable and important part of the correlation near r = 0 almost unchanged and
reduces the contribution of the correlation at larger values of r near ± M, where the

correlation is less reliable, to nearly zero, preventing the formation of large negative lobes
in the spectral window. This way is reasonable to get consistent estimates of the spectral
ordinates and make the spectral window fulfill conditions I-5 in Section 2.5.4.

However, in getting the cross correlation, if we use lag windows in the same way,
sometimes important information is lost, and the result is an apparent reduction in coher-
encies. This was studied theoretically by N. Akaike and Y. Yamanouchi 29 (1962), but a
more intuitive explanation by this author [Yamanouchi3° (1961)] is given here.

In cross correlation Rijf), if the phase relation of the output j(t) lags or leads the
input i(t) considerably, the maximum value of the cross correlation, which is not the even
function, will no longer lie at the origin r = 0 but will lie at a larger or minus value of r
(distant from the origin). In applying lag windows, if we set the maximum of the lag win-
dow at r = 0, sometimes important information is lost at the peak of cross correlation. A
small value of the lag window will be multiplied to the peak value of the cross correlation
at a larger or minus value of r, and will keep the less important part of the cross correla-
tion almost unchanged by the windows, as shown in the example in Fig. 3.1. This • not
reasonable, so the author suggested shifting the origin of the cross correlation to its pe-,k
point and then applying the lag windows. The amount of the change of phase from this
shift ro 7hould, of course, be used later to modify the phase relation by row.
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•• 
WN (r) Rij(r)I

• ro -- r

t

~~ -r-r I

I
I

Fig. 3.1. Shift of cross correlation in applying the lag window.

This alignment technique can be expressed as a shift in lag windows as well as a I
shift in the origin of the correlation, or as a shift of the output time series relative to the
input time series,

S 1 (N-1)-ro
ljw) = "7 I w(r - ro)RjAr)e-' , (3.1)

r=-- (N-1 --ro

where w(r) is the standard type of lag window for estimation of the auto-spectra.

Thus

I (N-1)I

jow) = 1. (-i w(r)Rji(r + ro)e-4(rrO). (3.2)

So if we set (

I
I
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I 1Sij,i(o,)=- w(r)Rj,(, + ,o)e-•, (3.3)

theni(o) = ,ji .) X e- . (3.4)

I The phase is shifted by wtro by this shift in the origin. Accordingly the phase of the
output should be modified by - row after the cross spectrum analysis. Figure 3.2 shows an
example of this shift in the analysis of a 5-ft model ship rolling in tank waves 31 (beam
sea, without advance speed). From this figure, we find the amount of shift on cross corre-
lation should be ro = 9. The results of the analysis are shown in Figs. 3.3 and 3.4. The
improvement in the coherencies due to the shift is clearly shown in the upper part of Fig.
3.4. The improvements in phase relation and in gain are also apparent, although these im-
provements are partly due to the large m(= 60 > 40).

x10-4 (FEET)
2 

CORRELOGRAM RUN NO 834 x10-4

15 WAVE OWT) T- h6T 15

10 T - 0.3 SEC 10

5. 5
20A-

I1h - -10

(OEGREE)
2

ROLL OW(T) _1

BrB

66

0~ AA 20 .0-1

I (FEET-DEG) ROLL-WAVE Opw(,) SHIFT

0.04f 00

Fig. 3.2. Auto and cross correlations of wave, roll, roll-wave
for a model ship in tank (run 834).

(From Yamanouchi. 3 1)
Of special interest to us is that the improvement in coherencies is also reflected in

the change of bandwidth of the cross spectrum. Before the shift in origin, the co- and
quad-spectra in Fig. 3.3 had a narrower bandwidth than after the shif' showing that the
blurring effect of the spectral window is smaller for the cross spectra with broader band-
width than for those with narrower bandwidth. Thus this shift improved the estimate of
the cross spectra by reducing the leakage of power. Although we refer to improvement,
we do not have experimental data in regular waves for comparison in this run. However,
in Figs. 3.5-3.7, which show the same kind of result for run 832 and the data in regular
waves (Fig. 3.7), we notice the same tendency and conclude that the results obtained by
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this shift are best in this analysis and closest to the experimental data obtained in regular
waves.

CROSS SPECTRUM

.10-4 (FEE.T1
2

.SEC FT DEG SEC

25 11 RUNNOS34
SP CT U RU NO 83- 0U02, ROL WAVE

SPECTRUM N I
,5 __RNO 8 O0-- &'_------'°I SPECTR

0' L1 2 3 4E 5 6 7 a 9 101 -0
___ _T SEC I

R L ... 0j U." .Q 11

0 00 • I 40. VJ"OO0fT • I
0 1 2 3 4 5 6 7 8 9 10

Fig. 3.3. Auto and cross spectra of wave, roll, roll--wave (run 834) (max.I

lag no. rn=60 with shift and m=-40 withouit shift).(From Yamanouchi.31)

3.3 RMPULSE RESPONSE FUNCONS FROM THE CROSS

AND AUTO CORRELATIONSI

By Eq. 2.169 for a linear system,y3 = I g, X,-- + NE, (3.5)

U =-CO

where g,, is the linear impulse response function of the linear system, X, and Y, are the
input2.164and 3..put, respectively, and Nc is the noise, uncorrelated with Xt and Y, By Eq.

ByE...61fraliersytm

II
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G(w) = Ug, e"-u (3.6)
IU 4--00

where G(w) is the frequency response function of this system. Then as already shown byU Eqs. 2.165, 2.170; 2.166, 2.172,

Ryx(r)=Z g. Rnx(r-u) (3.7)
U

i - -,- •(m 40. WITHOUT SHIFT)

--- <---(m•60. WITH SHIFT 2.1,)

20, COHERENCy

10' 30 40 50 60

02L

90,I 60' -

60 .RUN 
NO 834

30'- .
O -J . WTH B K

30 40
•t3L1 

E SPETRUM ]

SR-=SOONSE IH ()IC0 m . 40 - -

n, n. 60 -o-0
40-

10,

0
30 40 50 60

SEC

Fig. 3.4. Frequency responses of roll-wave (run 834)3 (m=60 with shift and rn=40 without shift).
(From Yamanouchi. 31)

I sx(w) = G(w) sx&w) (3.8)

If we assume that g., (with - co < u < 00) can be approximated by finite terms of

g. (with - n < u < n), then Eq. 3.7 gives the matrix of Eq. 3.9,

I
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CORRELOGRAM

1 FEET)
2  

RON NO 832
1[ WAVE OW(T) (SPECTRUM 1) - -__5

101- L'
5 0o 5 SEC

412 10 0 60 40 20 1 20 40 60 80 's. 211 1

________ i3
5' i

X10-4 (FEET-DEGREE) 
. 10-

40 ROLL-WAVE ORW(T) l40AooA
201

100io soo 0 60 40 20 0ý 420 60 601 0'2
40- 120\] Ii j ý114

' I
Fig. 3.5. Auto and cross correlation of wave, roll, roll-wave of a

model ship (run 832).
(From Yamanouchi. 31)

I
"Ryx(-n) Rxa(0) Rn<(1) ...... Ry(n).. . . Rny(2n)

Ryx(-n+1) Rxx(1) Rny(O) ..... Rya(n-1). .Rxx<2n-1) g-•+i I

Ryx(O) Rx(n) Rn(n- 1) .. . RXXO).. . . Rxj(n) go J3.9)

• I
RyX(n - 1) Rxa(2n - 1) Rxn2n_- 2) .. Rnx(n - 1) . XX .R (1) Ign--1

Ryx(n) Rxx(2n) Rxa(2n- 1) . . Rxn(n) . Ry(O) JLgI

using the relation R(- r) = R(r). Here for the cross correlations, we use the shifted version 1
of Ryx(r), as Ryx(O) is to be the maxima over the range r = - n to n, and for the auto cor-
relation, the range 0 to 2n. The matrix on the right hand side of Eq. 3.9 is large on the
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w SEC

Fig. 3.6. Auto and cross spectra of wave, roll, roll-wave (run 832)
(m=60 with shift, and m=40 and 120 without shift).

(From Yamanouchi. 31)

diagonal and is symmetrical around the diagonal. The solution of Eq. 3.9 gives g. over

the range u = - n to n. This author [Yamanouchi 32] believes this method provides the lag
window free estimate of the impulse response function, or the spectral window free esti-
mate of the frequency response function from Eq. 3.6. The choice of the lag window or
the spectrum window is a serious problem in getting a good estimation of the spectra and
the frequency response relations of the output to the input, as was discussed in Sections
2.5.2-2.5.6. This method eliminates the problem of windows and frees the calculation
from their blurring effect. The use of Eq. 3.9 might eliminate also some of the uncertain-
ties and errors in the algorithm for the correlation.

Figures 3.8-3.11 show the analysis of the rolling of model ships afloat in irregular
beam seas. g,, for - 90 to 90 was analyzed using Ryx(w) of- 90 to 90 and Rxx of 0 to
180. The correlations in Fig. 3.8, where the cross correlations are already shifted by 9,
are shown in normalized form and the calculated g, are shown at the top of Fig. 3.9 for
u of - 30 to + 30 only, though the g, were computed for u of- 90 to + 90. For compari-

son, the impulse response function obtained as the Fourier inverse transform of the
frequency response function calculated by cross and auto spectrum analysis is shown at
the bottom of Fig. 3.9. They look very similar.

The frequency response function obtained as the Fourier transform of the impulse
response function gu calculated by this method is shown in Fig. 3.10 together with the
results of cross and auto spectral analysis. Again, the frequency response function
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Fig. 3.7. Frequency responses of roil-waves (run 832).

(From Yamanouchi.31 )

IG(w)I, i.e., the amplitude gain, from these different methods is very similar. From the 3!
time history of inputs Xt of the waves, and the use of Eq. 3.5 which neglects the noise l

N,, the output 1', was synthesized, using values of g,, u = - 90 to 90, as shown in Fig.

3.11. These results show that this method gives reasonably good results. II
This example is for the roll of a model ship where, because of the small damping of

the motion, the impulse response function g, is slow to decay. We need a larger number of

terms, i.e., g= for a longer range of u. With much larger damping, as with the heave or
pitch response of a real ship, this author believes we will get better results.

Hrth more statistical, stricter estimation of reliability or confidence in the results 5a
is lacking. This author found later that the procedure was the same as that to solve the
Yule-Walker equations used for the AR--model fitting, that will be mentioned in Part II.
Accordingly, the above mentioned belief was more strictly examined statistically as the I•
choice of order in AR-model fitting, as mentioned in Section 5.5. a

3.4 E-XAMPLE OF MULTIPLE INPUT ANALYSIS, A TRIAL FOR
NONLINEAR ANALYSIS OF SHIP'S RESPONSE

Here a multiple input analysis of a ship's behavior at sea, performed by this author
[Yamanouchi33), will be shown to demonstrate the usefulness of the method. Often, one

I
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I FMg. 3.8. Auto correlation of waves, roll, and cross correlation of

wave-roll of a model ship (shift ro = 9).I (From Yamanouchi.32)
0. .2.. k

1 -3-6 020 -10 40.05 10 20 30

-40 -30 -20 -10 10 20 30 40

0-0.1

IR Fig. 3.9. Impulse response of roll to wave height (without advance speed).

(From Yamanouchi.3 )

m output is analyzed as the response to a single definite input. This approach is reasonable

, when the real source of excitation for the system is actually single and no other source

I need be considered, even if several outputs are correlated or combined. For example,
even though the sway, roll and yaw, or pitch, heave and surge motions of a ship are

i

Ii7IM IESPI N



RELATIVE ERROR
1.0
0.8,
0.8-
0.4 -

COHERENCY

xI

0n=9

0.PHASE SHIFT

-x

-2x I

0.6- m = 90 I

I• W2 WINDOW
0.7- AMPLITUDE [• Ia. = 0.6398i

0.6- GAIN a, = 0.2401
0.5 I la2 = -0.0600
0.4-

013 A FOURIER INVERSION OF
0-2 -IMPULSE RESPONSE0I

0 1 2 3 4 5 6 7 8 9210

RESPONSE OF ROLL TO WAVE HEIGHT I
Fg. 3.10. Frequency response of roll to wave height. N
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Fig. 3.11. Comparison of synthesized and observed output of roll.

(From Yamanouchi.3 2) I
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correlated and combined with each other, we can get the response of a single roll. sway.
or yaw and so on, to the wave (either slope or height), as frequency response functions by
solving the simultaneous equations of motion of the necessary degree of freedom, consid-
ering the waves as only one source of excitation.

This is not the case, however, when one output must be considered as the response
to many related inputs. Shown here is an example that this author encountered in the
analysis of a ship's motion and stress. The ship was a cargo liner on the New York line,
under service in winter on the North Pacific Ocean.34 The relative wave heights of en-
countering waves were measured by an on-board ultrasonic sensor located on the side of
the hull near midship. Because of the poor position of the measuring device, no attempt
was made to convert the readings to absolute encountering wave heights. However, the
real encountering waves are only one input to the stresses and the motions of the shiD. In
analyzing the transverse stresses induced on the web frame near midship, this author tried
to express the effect of real waves by the relative wave heights measured at the side of the
ship and by supplementing with other inputs like rolling, pitchinr and vertical accelera-
tion measured at the same time. These additional inputs were correlated with each other,
as shown in Fig. 3.12, and multiple input analysis techniques were adopted to analyze the
response.

OTHER MOTIONS
I xl y

ROLLING g, W

PITCHING 92()STRESS

OTHER REL. WAVE HEIGHT g3 (t)

EFFECT

HEAVING

Fig. 3.12. Multiple inputs interpretation.
(From Yamanouchi.33)

With stress as the output and such inputs as relative wave height, rolling, pitching,
and vertical acceleration, and with various numbers of inputs, the effects of some particu-
lar inputs were investigated by checking the multiple and partial coherencies that show
the effects of a particular input in the presence of one or more other inputs.

Another trial investigation was the analysis of nonlinearity of output to input. Con-
siderations on nonlinearity that provide another reason for getting a poor coherency
function are generally treated in Part Ill of this lecture, but for convenience one trial is
described here in relation to multiple input analysis. Figure 3.13 is an example of a record
of simultaneous measurement of many responses of this ship such as roll, relative wave
height, vertical accelerations at four points, stress on the web frame, revolution and
torque of the propeller, helm angle, yaw, encounter time of waves to the stem, and so on.
Some of the responses were picked up, sampled, digitized, and punched on a tape after
the test. (At that time data were processed using punched tapes.)
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I

STable 3.1 summarizes the measurements of the responses and shows that these
thirteen representative runs cover a good variety of sea conditions, wave heights, and
directions. This is reflected in the variation of normalized correlations and spectra, for
example in the rolling, pitching, stress, and relative wave heights in Fig. 3.14 and
Fig. 3.15.

If we assume a variety of environmental conditions, it is possible that various sea
conditions might appear ideally by the same chance, and the average of all normalized
wave spectra might give us a nearly white spectrum, or the spectrum of white noise. Then
the averaged response might show the characteristics of the response to the white noise,
i.e., the characteristics of the response functions themselves, as was discussed by
Yamanouchi, et al.35 The average normalized correlation diagram or correlogram and
averaged spectra are shown in Fig. 3.16.

These averaged rolled and pitch spectra are not the ideal ones, but quite reasonably
show the smooth peak at its natural frequency. Moreover, the correlation functions of
roll, pitch and stress show the beautiful forms of damped oscillation. The averaged spec-
trum of stress has a smooth peak at twice the frequency of the roll natural frequency. The
natural frequency of the stress response should be in a higher frequency range, but must
have been cut off by the filters and should not appear in the averaged spectra. The peak
that does appear at the double frequency of the roll natural frequency might indicate that
the transverse stress induced at the web frame is quadratic nonlinear to the rolling motion.

To check this possibility, an artificial process of rolling square was made as shown
in Fig. 3.17. This naturally has a biased mean as shown in its variational form in the timeseries and also in the spectrum in Fig. 3.18, where the power value near v = 0 is large. In
the next step, a digital high pass filter, shown by Eq. 2.132, was applied to this roll

S1squared process as X{.(t) = 114 -x.}. The filtered roll squared process appears at the

bottom of Fig. 3.17 and its spectrum in Fig. 3.18. In Fig. 3.18, we find the shape of the
spectrum of the filtered roll squared process is similar to that of the averaged spectrum
of the stress, which validates the assumption that the stress is a quadratic and nonlinear
response to rolling motion.

The lower two graphs in Fig. 3.19 show the results of single input-output spectrum
analysis, with the stress as output and relative wave height or rolling as a single input.

Coherencies f2 values are so low that the stress cannot be the output of only the relative

wave height nor only of rolling. The top of Fig. 3.19 shows on the contrary that relative
wave height is fairly well explained just by rolling; the coherency, especially in the
frequency range in which rolling has reasonable power, has a value pretty near 1.

Since we found that the stress was quite possibly quadratic and nonlinear to the
rolling, the next step was to find the response of stress to the single roll squared process,
(roll)2.To eliminate the effect of large bias on (roll)2, the response of stress to the single
(roll)2 filtered process was also obtained. The results are shown in Fig. 3.20, and the
coherency is again rather low.

To check the coexistence of many other inputs, multiple input analysis was intro-
duced. Stress was considered as the output of rolling, pitching, relative wave height, and
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Table 3.1. Summary of seaways and particulars of measurement
and analysis for test runs.

(From Yamanouchi.33)

OBSERVEDI

RUN DATE WIND SEA STATE DIGITIZED

NO. TIME SKETCH S SWELL/SEA CHANNEL
CS DIR. (DEG) SWELL D> C CONTENTS AtOALTA VEL,. (MIS) ASE ... 1 4T. PERIOD & A.I

SE E (M) (SEC -) 1 2 3 4 (SEC.) LAG)

204 JAN.15 3 -70 \,"' 54.8 8.5 R P S W 1.5 630
1335"1345 1 \ 1.2 5.3 60 1

205 JAN.16 3 -127 4 2.2 9.0 R P S W 1.5 600
0910-0920 6 0.7 4.0

206 JAN.17 3 -80 3 3.5 11.3 R P s w 1.5 600
u900-0910 8 0.7 3.7 60

207 JAN.18 4 -70 'V'•. 4 2.9 9.7 R P S W 1,5 600 I
0900-0910 11.5 1.0 6.2 60

208 JAN.19 2 _10 3 33.0 10.6 R P S W 1.5 600
0900-0910 5.5 0.5 3.5 6 0

209 JAN.20 2 -120 . 3 1.5 8.7 R P S W 1.5 400
0900-0910 ' 7 105. 60

211 JAN.22 6 0 .. _J. 53.9 9.3 R P A W 1.5 550
0900-0910 12.5 T.5 5.6 6

214 JAN.23 5 -10 '-,.. 8 7.8 13.5 R P S 1.125 800
0805-10820 12 3.2 6.0 80

215 JAN.23 6 35 A. 7 6.4 11.4 R P S 1.125 800
1400 -'1415 16 2.1 6.2 so

216 JAN.25 4 40 4 8 6.2 11.0 R P S 1.125 720
1317-1330 8.5 1.6 5.5 -- O"

218 JAN.26 7 75 ,,- 8 5.4 8.7 R P S 1.125 800

1330--1350 20 •yf- 2.0 6.8 80

219 JAN.26 7 35 76.2 8.5 R P S 1.125 800

1530-1545 17 1.8 5.7 805• -';. u.. 1.585.0 8
220 JAN.27 2 30 4 1.5 .0 R A S W 1.5 8000900--0918 T..- 1.5 8.0 60•

R: ROLLING S: STRESS A: VERT. ACC. 3
P: PITCHING W: REL. WAVE HT.

8
I
!
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Fig. 3.14. Example of auto correlations (normalized) and the spectra (run 207).
(From Yamanouchi.33)
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22
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1/41w -DEG D 2 SEC ~(0L'DE2 S }•SRR (POLL)

-1.0o I I i i I I , I
0 20 40 60 80s N. B0

1.0• 1 1 1 1 so SL M I 80. N 0 2at1 125 SEC
-R, I 'AR OR OR . 3,996 DEGW INDOW W2

0 ' V V k/'v ' I I f I I I

30 DEG 
2 

SEC
-1.0 N•N S0 Sp (PITCH)

SI a 1.12S SEC

R22'. Pp /
0

2 O0 -2..07DE6' 2 0 I 4 6 . , .

00 0.5 170 1.5 20 25

-1.0 I I
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Mg. 3.15. Example of auto correlations (normalized) and the spectra (run 214).
(From Yamanouchi.33)
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Fig. 3.16. Averaged correlograms and spectra (normalized). 
!

(From Yamanouchi.33)

T.NO. 207

ROLL II

0EG 30 60 9b0 2 1501

310 DEG 2  12 0f\

1°F (ROLL-

01 k AA f IAAL f]I

5- DEG 2 (ROLL)2.FILTERED

"-5 1 1 SEC-50 30 60 90 120 150

Fig. 3.17. Roll, (roll)2 ,1/2{(roIl)n2 - (roll)n+12} processes.
(From Yamanouchi.33)
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I II P2 3

DEG SEC S (iWt.L)

DEG4 SEC

0 ,

to- sC ~o-FLTEFID

0 0a5 s S 2.0

Fig. 3.18. Spectra of roll, (roll) 2, (roll)2 -filtered.
(From Yamanouchi.33)

heaving. Heaving itself was not measured, but its effect was assumed to be included in
the vertical acceleration of a representative point and also to be combined in pitching,
rolling, and relative wave height. Examples of four-input analysis are shown in Figs. 3.21
and 3.22, in which stress as the output is given on channel 5 and the inputs of rolling on
channel 1, pitching on channel 2, relative wave height on channel 3, and (roll)2 filtered on
channel 4. Figure 3.21 shows five auto correlations of output and input R55, R11, R2 2, R 33,
R44; ten cross correlations of combinations of the one output with four inputs R5 1, R52 ,
R53 , R54; R2 1; R4, R4 2, R43; R 3 1, R32; and five auto spectra of stress Sss, rolling SI,, pitch-
ing S22, relative wave height $33, and roll squared. Figure 3.22 shows conditional (partial)

gains and phase relations as IISRpWR2, Hsp.PWl 2, Hsw..RpI, and HSRL 2 ,W in the form

of absolute values and arguments. The notation follows the convention already explained
in Section 2.6.5 on partial coherencies. For example,

HSp-RT2(0) = S~p__RW2(W)
Spp_(WR2(CO)

shows the frequency response of stress to R: rolling, W: relative wave height, and R2 :
squared roll filtered processes under the condition that the effect of pitch has been
masked. In the same way, multiple and partial cross spectral analysis was tried with stress

as one output (4), and roll R (1), pitch P (2), and (roll)2 filtered R2 (3) as three inputs. In
another one output/three input cases, pitching P was replaced by vertical acceleration A.
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COHERENCIES
TEST NO. 207 E H3

0.8
___ 1! 1 A __ 3
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0.4 \/"
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COHERENCIES
TEST NO. 207 y2 STRESSROLL

1.0

0.6 -

0.4-

02
0.0

10 20 30 40 50 .60

0.5 1.0 1.5 2.0 OMEGA

Fig. 3.19. Coherencies for single input-output relations.
(From Yamanouchi.33)

The results of spectrum analysis of the first three-input case are shown in Fig. 3.23 and
Fig. 3.24. I

Auto correlations R4, R33, R22, RI, and all combinations of cross correlation R41,
R42, R4 3, R 31, R32, R21 and auto sr-, tra S4, S11, S33 are shown in Fig. 3.23. Partial gains

and phase relations HsR.pR2, HspRR2, and HSRLPJ, are shown in Fig. 3.24. The effects

of the increase in probable inputs are more clearly shown in the multiple coherencies, and
the effects of several inputs when the effect of a certain input was masked are shown on 3

!
84 3a II I



COHERENCIES
TEST NO. 207 A2;

I2W STR./(ROLL)2
SR

1.0

0.8 N_ _ _ _ _ _ _ _ _ _ _ _ _

0.4 ~---

"0.0 * " ' • ._
10 20 30 405 50 60

0.5 1.0 1.5 210 OMEGA

COHERENCIES
TEST NO. 207 A ST24ROU'f-'it"

1.0
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0.6 _

0.4

0.0" 10 , 20 ,30 40 , 50 60
0.5 1.0 1.5 2.0 OMEGA

Fig. 3.20. Coherency of squared rolling process and filtered squared
rolling process to the stress.

(From Yamanouchi.3)

the partial coherencies. The results for two-input, three-input and four-input cases are
compared in Fig. 3.25.

This figure indicates that the multiple coherency shows higher levels as more inputs
are taken into account. Moreover, examining the partial coherencies, yR2

YSR2_Rpw and others, at the bottom figure of Fig. 3.25, we find that the contributions of
rolling and of (roll)2-filters are large compared with the other inputs. This finding sup-
ports the assumption of quadratic nonlinearity of transverse stress to the rolling motion.

Figure 3.26 shows the multiple and partial coherencies for the two-inputs and
three-inputs cases, and here again we find the coherency improves with increasing num-
ber of inputs, including the (roll)2-filtered process. Also the contributions of rolling and
(roll)2-filtered are large, compared with the contribution ot pitching. The multiple coher-
ency is very close to I around the frequency range in which the output, here the stress,
has important response to input.
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_SP-AR 2 S 1

-1 5 -1

-151 15 1

-0o 20 40 0 80s 0 20 40 60 W0 0 20 40 W

Fig. 3.24. Example of three-minputs analysis; amplitude gain and phase shift.
(From Yamanouchi.33)

To show more clearly the usefulness of multi input analysis, apart from the nonlin-
earity of responses, another example used the vertical acceleration as a linear output and
rolling, pitching, and relative wave height as inputs. The multiple and partial coherencies
are given in Fig. 3.27, in which the multiple coherency is almost 1 at the important range
of frequencies and the contribution of rolling is large for this vertical acceleration, as we
expected.

Figure 3.28 is another example of two-input and three-input analysis for stress
which does not take into account the nonlinearity of rolling. Comparison with Figs. 3.25
and 3.26 at the important range of frequencies for stress shows lower coherencies when
the nonlinear response of rolling is not taken into account.

Later, the author found that taking the input process squared as an input is very rea-
sonable in discussing the quadratic response character of the output as shown in Section
11.4, in Part M.
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Fig. 3.25. Examples of multiple and partial coherencies - (1); stress-roll, pitch, relative3
wave height, and (roll)2; comparison of two~-, three--, and four-winputs cases.

(From Yamanouchi.33)3
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Fig. 3.26. Examples of multiple and partial coherencies - (11); stress--roll,
pitch, and (roll)2; comparison of two- and three-inputs cases.

(From Yamanouchi.33)
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Fig. 3.27. Example of muhtiple and partial coherencies - (1ll); vertical accelerationý-5
roll, pitch, and relative wave height, comparison of two- an
three-minputs cases.

(From Yamanouchi.33)
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Fig. 3.28. Example of multiple and partial coherencies - (IV); stress-roll, vertical
acceleration and relative wave height; comparison of two- and three-
inputs cases, when the (roll) 2 is not taken into consideration.

(From Yamanouchi.33)
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I

I CHAPTER 4

I CONCLUSION FOR PART I

In Part I, the nonparametric procedure for analyzing the irregular time series was
discussed. At the beginning of Chapter 2 the basic procedure for obtaining the spectrum
through periodograms was summarized and then a few considerations for improving this
method were introduced in Chapter 3. The conclusions derived from the discussion are as
follows:

1. The spectral analysis technique with the use of periodograms is well established
and affords us a powerful approach for analyzing irregular phenomena.

2. In sample computations of the correlation function as well as of the spectra,
however, care is necessary in sampling the data. The sampling time interval, the length
of record, maximum length of lag, and proper windows must be chosen to get consistentjestimates and avoid abasing, blurring by the windows, or loss of reliability.

3. Spectral-lag window pairs have been proposed by many scholars, and were
shown that we must be careful of the effect of windows on the reliability, variability, and
resolution of the results.

4. Computation of the spectrum Larough periodograms by use of the Finite Fourier
Transform is the same as that computed through the correlation function.

5. The Fast Fourier Transform (F.F.T.) method is a convenient algorithm for reduc-
ing the number of operations in the computation, but the considerations of the windows
are also necessary and important in applying this method.

6. The correlation functions can also be conveniently calculated by the F.F.T.
method if proper precautions are taken.

7. In connection with the choice of windows, the use of filters before applying the
window is worth considering.

8. Not only the spectrum functions but also the correlation functions (correlo-
grams) should be investigated carefully in estimating the character of the process.

9. In applying the spectral window in cross spectral analysis or in response analy-
sis, the shift of the origin of the cross correlation (shift of the output record) should be
considered to minimize the leakage of power through the use of spectral windows in
computing cross spectrum.

10. Cross spectral analysis is essential in the analysis of the response process of a
dynamic system to get full information on the frequency response functions of the sys-
tem. Cross spectral analysis is effective in reducing the effect of noise that contaminates
the output.

11. The coherency function is a good index to the extent to which the response can
be expressed by linear relations. To make the coherency function useful the computations
of all spectra must be done properly according to the preceding items 4-10 in getting the
coherencies.

12. The impulse response function may be obtained from the cross and auto corre-
lations of output and input, without the trouble of choosing a window. This procedure
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was found later to be closely related to the AR-model fitting technique discussed in Sec-
tion 5.5.

13. In the analysis of seakeeping data, multiple input analysis is helpful. Partial co-
herencies and the multiple coherency give a good clue to the extent of contributions from
each input.

14. In connection with consideration of the filtration of the stochastic process, the
model fitting techniques that try to express the stochastic process by a finite number of
parameters are found to look promising to supplement the nonparametric method. The Imodel fitting technique or parametric method will be reviewed in detail in Part IL.
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PART H

MODEL FITTING TECHNIQUES
(PARAMETRIC SPECTRAL ANALYSIS)

CHAPTER 5

DISCRETE MODEL, MODEL FITTING,
CORRELATION AND SPECTRUM FUNCTIONS

5.1. INTRODUCTION

hn Part I, the procedures for estimating the spectrum nonparametrically through
autovariance from a sample observation were summarized and discussed. We noted that
the statistical consideration of each step of the computations are important in getting
reliable results, and the author suggested several ways to improve reliability. In Part II,
another approach to getting reliable results from a single or a short observation of a
process will be discussed. The method introduced here is called a parametric approach,
because some type of model is fitted to the sample observation, and then the parameters
of the model are estimated statistically. In looking for the models, we can use the knowl-
edge that we already have about the process, such as the degrees of freedom, and the
physical characteristics of the equations of motion that govern the behavior of the system
or about the inputs. A few methods which use the parametric approach, such as the
maximum likelihood method (MLM) and the maximum entropy method (MEM) are
essentially the same with the one mentioned here, and will be explained later.

In this analysis, the criteria for deciding the fitness of the model are very important.
The method introduced here, called the "MAIC Method," was introduced by Dr. H.
Akaike of Japan and provides a powerful guide in finding the properly fitted model, prop-
er from a statistical point of view. In this analysis, the time domain expression of this
process, the time histories themselves, and the correlation of the processes play a big role
as was pointed out in Sections 1.3 and 2.5.8 and in the conclusion to Part I.

This parametric approach is not yet well known in the field of naval architecture,
although a few books by Priestley,23 Pandit and Wu, 3 6 Box and Jenkins, 37 and others3s
deal with it in part or in depth. For this reason Sections 5.2.1 to 5.2.5 give several statisti-
cal models of stationary time series in some detail with simulated examples by this
author. Then criteria for choosing the model, estimating the parameters, and deriving
the spectrum will be given at the end of Chapter 5.

Chapter 6 discusses the application of this method to a two-variate process, an
input/output system, and the usefulness of this method for the analysis of a response
system with feedback is shown.

In Chapter 7, examples of the application of this method to the analysis of seakeep-
ing data and a comparison with analysis by the nonparametric method are shown.
Finally, Chapter 8 provides conclusions and summaries for Part I.
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5.2. DISCRETE PARAMETRIC MODELS

There are many statistical models for expressing time series. Among them the auto- 5
regressive (AR) model, the moving average (MA) model, and the mixed autoregressive
moving average (ARMA) model are the most representative linear models that we en-
counter in the analysis of irregular records of observations. In Part U, only the linear 3
models are introduced. Some types of nonlinear models will be referred to later in Part
I1. The order of the AR, MA, and ARMA models indicates the degree of simplicity or

complexity of the models. i
Here in Part U1, the discrete time process sampled from the continuous time process,

with an interval At is expressed by IX,) and its realization by X,. Except as otherwise in-
dicated, At is taken as 1. If At d 1, each function is easily transformed to proper form. as
was already mentioned in Section 2.4.3. The explanation of the character of the elemen-
tary models is based largely on the work of Priestly 23 and Pandit and Wu. 36

II
52.1 Pure Random Process

IX•) is called a pure random process if it is the sequence of uncorrelated random
variables that are stationary up to order 2, and is written 3

Xt= El. (5.1)

The mean is =
E{X,} =/u, (5.2) I

the variance is -

E0(

and the covariance function is

R(r) = cov. IX, Xt+r 0d (5.4)21

R(r) is a function of r only and is normalized by a 2 as

(55r) 1
1 r l

Its spectrum is then 5
1 0 02

"s = R(r)e=**r =-=const. (for-.7r o -> 7r). (5.6)
2rr = co27

In this case
1. When this process is also Gaussian, then X, is not only uncorrelated, but also

X, Xt-1," • • X,,, are independent of each other.

2. The spectrum s(w) is flat for the interval of frequencyow for -;r tour, and is
referred to as white noise.

3. The process is also referred to as a memoryless process.
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R (r)

0., - r

-2 -1 o 1 2 3 4

Fig. 5.1. Theoretical autocovariance of a pure random process.

S (,)

-I70 n"

Fig. 5.2. Theoretical spectrum of a pure random process.

52.1.1 Example of a Pure Random Process. Figure 5.3 shows an example of a
pure random Gaussian process generated for t = 1 - 600, with average 0 and variance
1.0. At the bottom, a part (t = 100 - 250) of the record is shown expanded on the time
axis. Its readings are listed in Appendix Al as Table A1.1; pp. 251, 252, and 253, for
reference. This process was generated by the method of "Random number generation and
testing," generally popular as "multiplication type residual method."

It was found that by this method it is hard to get a really white process with precise-

ly designed variance of W, = 1.0 from this short record (N = 600), and the sample

variance appeared as = 1.046490. Figure 5.4a shows the theoretical autocorrelazion

coefficient Q(0) = R(O)/R(O) = 1, e(r) = R(r)/R(O) = 0, r ;e 0 by Eq. 5.5. Figure 5.4b

shows the estimated 6(r) = R(r)/R(O) from the generated process. From the model fitting

technique and order determination that will be mentioned in Section 5.5, the order ap-
peared to be 0, and AR(0) appeared to be the most appropriate model to fit this process.

The estimated autocorrelation of this model fitted by Eq. 5.4 is just the same with the

theoretical e(r) shown as Fig. 5.4a because the difference is only in aE values, that its

drawing was omitted. Figure 5.5a shows the theoretical spectrum function of this process
designed by Eq. 5.6, that is, the white noise. Figure 5.5b shows the estimated spectrum of
the model fitted by Eq. 5.6. This is also the white noise and looks very similar to the
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5.00- 1

2.50j
.J,

-2.50

-5•.001-

100 150 200 250

Fig. 5.3. Simulated pure random process AR(O) 3
X= ,, : N[O, 1].

theoretical spectrum except that the variance was a little larger, 6• = 1.046490, as
mentioned above.

In Fig. 5.5c, for comparison, the estimated spectrum, calculated by the nonparamet- 5
ric or correlation method, and the Fourier transform of the calculated R(r) in Fig. 5.4b are

10 I
100

I



1.00

-0.50

3 4
0.00 -

-1.001

0.00 7.50 15.00 22.50 30.00 37.50 45.00 52.50 60.00

Fig. 5.4a. Theoretical AR(0).

1 1.00

* 0.50

£ 0.00

* -0.50

S~-1.00
0.00 7.5 15.00 22'50 30'00 37'50 45.00 52150 60.00

3
Fg. 5.4b. Estimated.

Fig. 5.4. Autocorrelation coefficient for pure random process AR(O)

XI =c, c,: N[0, 1].

shown. The maximum lag number M = 60 and the so-called Hanning Type spectral win
dow was used to calculate this spectrum. It looks very different from the white spectrum
and has many sizable peaks and valleys. In the figures, the 9C% level of confidence inter-
val of this estimate, based on theX2 -distribution of the equivalent degree of freedom
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(here approximately equal to 27), as is explained in Section 2.5.5 is shown as vertical
lines for reference.

2.50 -

2.00 -. - I

1.50 -

1.00

0 .5 0 -i

0.004 .

0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50

Fig. 5.5a. Theoretical AR(O). I
2.50-

62 1.046490

2.00

1.50 1
1.00 1

0.50 ____

0.00 - .. , •. . ...

0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50

Fig. 5.5b. Estimated by model fitting as optimum AR(O).

Fig. 5.5. Spectrum for pure random process AR(O) I
X, = E,, e,: N[O, 1].

This difference tells us that the process might not actually be white in this short
period of 600 and also that it is hard to get the 'real' character of the spectrum by the
nonparametric method from this short record. It is interesting to note, however, that by
the model fitting method, even from this short record, the fluctuations disappeared and
the spectrum appeared to be white.

1
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3.00

2.50

2.00

1.50 -"

0.0 -ii'

0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.,4 0.50

Fig. 5.5c. Estimated by nonparametric method.

Fig. 5.5. (Continued)

5.22 Autoregressive Process of the First Order, AR(I).

When Xt follows the relation

Xt = aXt-. + et, (5.7)

where a is a constant and {f,1 is a stationary pure random process,

then E[Et" Et.-r] = a.2 when r = 0 (Fig. 5.7) (5.8)
10 otherwise.

{)4) is called an autoregressive process of the first order AR(1). Equation 5.7 means that

1. XY has a linear regression on XY4 1 as in Fig. 5.6

2. E, plays the role of error in the above relations of regression

3. X is dependent on one step back value of the same process X- 1.
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ItII I I

I
I
I

0 "• xt-1

Fig. 5.6. X, vs. X,.

Besides, when {Xt) is Gaussian, this process is called a "Linear Markov Process" as
will be explained in Part III.

Fig. 5.7. E• vs. c 1 .

5.2 2.1 Green's Function of AR(1). 3
Xt = Et+ L,.)(-!

= ct+ a(Et-i + aX,-2)

E, aEII -a2E .2 + awl{IE 1+aXo}t-i

= EarE + a Xo. (5.9)

If initially Xo= O, or X, = 0 when r SO, 3

I
I
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thenI
then Xt aE,-rc , (5.10)

r=O

or, considering the stationarity of X• and assuming that X, exist,

XU= a I-M,+a +NX.v. lfX_1NisO, whenNtendsto
u1 -- (N-I) ,

X,= a't-c- aL_, -5.J,
j=O

which is the same form as Eq. 5.10. Setting

Gj = at (5.12)

gives

X, -7 1 j JEt,_t- j (5.13)
j=O j=-00

Gj is called Green's function for AR(1).
Green's function Gj shows the weight given in the present response of Y, to the dis-5 turbance E,..., which entered the system j time units back. It also indicates how well the

system remembers the disturbance Et--j or how slowly or quickly the dynamic response of3 the system to any particular Ejj decays. Equation 5.13 is called Wold's decomposition

and gives the decomposition of X, into an infinite number of orthogonal variables Gj e j.
Equation 5.13 also implies that the AR(1) process can be inverted into an infinite order

I moving average process MA (-n) as

Xt=G, Et+G1 Er-,1 +G 2 e,-2 2 +" +Gj +E, • . (5.13')

£ 5.22.2 Solution of the Difference Equation. Equation 5.7 is a difference equation
and can be written

SXt- aX,-i = Et. (5.7')

The general solution of the difference equation is the sum of the solution of its
homogeneous equation plus a particular solution of Eq. 5.7'. The homogeneous
equation of Eq. 5.7' is3Xt-aXt.. 1 =O0, (5.14)

3I its solution being

Xt = Au (5.15)3 where/u is the root of its characteristic equation, equated to zero.

I
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flZ) Z-a O, (5.16)
namely I

= a. (5.17) I
A is an arbitrary constant and is determined by the initial conditions. From Eqs.

5.15 and 5.17,
Xt = Aar. (5.18)

One particular solution of Eq. 5.7 is obtained as follows using the backward shifting
operator B. Equation 5.7 is (

(1-aB) Xt =Ec, (5.19)

X -(1 -aB)-IE,-- (ajBJ.t- E= a' cE-j. (5.20)
j=0 j=0

This equation is the same as Eq. 5.10 or 5.13 expressed by Green's function. Therefore,
the general solution of Eq. 5.7 is

X,=:Ad + I ai E,-j (5.21) 1
j=0

The first term that is the solution of the homogenous equation is the free oscillation of
this system. When lal < 1, this free oscillation decays, and only the second term remains
as a stationary oscillation as in Eq. 5.20. Equation 5.19 is, more generally,

a(B)X, = Et, (5.22) 3
Xt = a-A(B)Et, (5.23)

where I
a(Z) = 1 -aZ. (5.24)

In order to have the free oscillation damp out, lal < 1 is necessary and, with the character- 5
istic Eq. 5.16 equated to zero,ftZ) = 0 must have its root inside the unit circle. Then from
the equation

a(Z) = 0, (5.25)

or 1 - aZ = 0, its root is the reverse of the root of the equation Z- a = 0, or ftZ) = 0. We
find a(Z) = 0 must have its root outside the unit circle. 3

5223 Inverse Function of AR(1). Green's function can be considered as an indi-
cation of how Xe can be expressed by the MA ( ,o ) process, because Xt is expressed as the

summation of infinite c, at preceding time points.

I
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I

Ox,=I Gj Et -j
j=O

= GOýEt + Gpt-1 + G2€-2 +" "-" + G) Et-j+"

(GoB°+G 1B+G2B2+ +Gj B'+

S(Gj B') E,.
j=o

Usually Go = 1. As the inverse relation to this Green's function, if

S(-jj) X,
j=0

= (-o-I 1 B -I 2B2  .IjB +" )XI
S=-IoXt - l Xt- 1 -12 X1-2 .. . J Xt-j ...- (5.26)

functionslo, 11 , Ij are called inverse functions, and usually -Io= 1.

Therefore

Et -X-IX 1-i -I 2X-2...-- ljXt-j" ". (5.27)

This inverse function shows how Xq can be expressed by AR ( c). Therefore the
inverse function of a pure autoregressive process AR(n) actually has no meaning. For
example, for AR(l) as in Eq. 5.7;

10 = - 1 I,11 = +a, Ij = 0 forj >2. (5.28)

5522.4 Stationality of AR(1). From Eq. 5.10

1-1

Xt = limmIaijG=E,-j=Et+aaEi+a2Ea -2+, " "-1€"
1-00* j=0

Then if

E[E t] =UAt, for all t, (5.29)

and as et represents white noise,

E[Et'*,u] = c0, t u' (5.30)

we can get
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I

fl-a' a•1
E[XtI l=im LAc +a+a2+...+al-l- 1=Jim a (5.31)

a=1t 
a

coy. [xt-Xt+,-] = lirn a'c,_ a',E, + _

r 1 - 2 a2
Therefore R(r) = Jira 1 (5.32)

2'ft,a=1I

I
If 'U = 0, I• °

var. [Xj] =R(0)= Jir a (5.33)

!IFrom these results:

[a. ] Whenu ,E4 0

E[XI] is, from Eq. 5.3 1, a function of time and therefore (XI is not stationary, even Ito order 1.
(1.) When lai < 1, and when t tends to a large value 3

E[X]= = const. by t. (5.34)
1-a

Therefore {X,} is asymptotically stationary to order 1. 5
(2.) When a = 1

E[X1 ] =u .* t (5.35) 5
E[X] increases by time t. Therefore, jXt} is not stationary, even up to order 1. This is the
case of Random Walk.

[b. I Whenq, =0

E [X t] = 0. 2t

COV. [Xt' Xr+r] = R(r) = U 2 qr (_-a'

I
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(1.) When lal < 1, i.e., whenflZ) = Z-a = 0 has its root inside the unit circle or

whena(Z) = 1 -aZ = 0 has its root outside the unit circle, from Eq. 5.32, even EIX') = 0

holds, the cov. [X,, X,] is a function of time. Accordingly, {X} I is not stationary even

up to order 2. However, when r --- c ,

coy. [X X, + r] = R(r) = - a const. by t, (5.36)
a1-

var. [X,] = E[X, X,] = R(0) = U 2 const. by t. (5.37)
1 -a

Therefore, I Xt} is asymptotically stationary up to order 2. The form of R(r) will be
different by the sign of a, although it gradually decays as r increases as in Fig. 5.8.

R(r)R(r)

2- - 0i F1 2 3 --w r -44 -2 0 3V

(a) o<a<< (b)-1<a<o

Fig. 5.8. R(r) of AR(1).

(2.) When lal > 1, i.e., when ftZ) = Z-a has its root outside the unit circle, or when
a(Z) = I - aZ has its root inside the unit circle,

o2cov. [XI - Xt+r] = R(r) = -2 _r,_2- 1) (5.38)
a2 - 1 ara" 1)

2
var. [Xt] f ( a2t- 1). (5.39)

a 2-1i

In this case, E[X] = 0, but not only does R(r) not converge to a small value as r increases,
but both R(r) and R(0) change by the time r and are not stationary. As time passes, these
values continue to increase. Accordingly, this process is not stationary up to order 2, even
asymptotically.

5.22.5 Aurocovariance and Spectrum of AR(1). The general solution of R(r) can
also be obtained more simply as the solution of a first order homogenous difference equa-
tion, because in this case, from Eq. 5.7,

Xt = aXt-1 +,Elt, (5.7)

assumingu = 0 and E[X4] = 0. Multiplying both sides of Eq. 5.7 by X,- r and taking the

expected values gives
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R(r) = a R(r- 1) when r #0 (5.40) 3
R(0) = a2R(0) + a 2  when r = 0, (5.41)

because {

E[Xi. E9 [ 3 (542

Equation 5.40 is the same type of homogeneous difference equation as that of the original
process {Xj) shown inEq. 5.14.

R(r)-aR(r- 1) = 0. (5.43)

Using the backward shift operator B gives

(1 -aB)R(r) = 0. (5.44)

Thus R(r) = (1 -aB)-lR(r) = 0 (5.45)

and R(r) = A/r. (5.46) 1
Herep is the root of. fZ) = Z-a = 0 when u = a

and thus R(r) = Aa'. (5.47)

In order to be asymptotically stationary, R(r) -- 0 as (r) -- • when lal < I andftZ) = 0
must have its roots inside the unit circle. I

From Eq. 5.41

R(O) = ar2 = A 2a (5.48)

x -a 2

Therefore, the general solution is, from Eq. 5.43, l

R(r) =• a = R(O)ar =Far. (5.49)
1-aI

This equation is the same as Eq. 5.36.

5.22.6 s(w) ofAR(i). Here we assumeu, =- 0, lal < 1.

IIThen the spectruma s(wo) is obtained as the Fourier transform of R(r)

1 00

s(o)) 2 Z R(r)e--ior

I - R(O) + 2 R(r) cos r} .

I
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I

Substituting the values of R(0) and R(r) in Eqs. 5.48 and 5.49 gives

= ax 1+2 2 arcosrw1,

-[1 +2 gsi eare+rw}]

1 [ r=lwI

=j 1-•• [ + 2 9te aeiw + (aeiw)2 +(aeiw)3 +- }

=--•[l2•e{1ae+aeu}

1a 1 +2 {e a cos w+)-i asin o j

af12 a cos (o( -acos w) -a 2 sin2c) a 2 1 -a 2

2jr (1-acosW)2 +a2 sinwo 2'r I-2acosw+a 2 ,

here 9te {. } indicates to take the real part of a function 1. }.

Inserting Eq. 5.37, that is r2 = 21 gives
1 -a

2 (I - 2a cos w +a 2)

S2 02
or,_____ cJE~ae' (5.50)=2;r 1- ae-i°12 =2a 1 a(e-i')j2

Therefore,
C a 2 1 -a 2  

_ c1+a
s(O) = 2.-r(1-a)2 = 27r 1 -a

2- e 1 (5.51)

2.7r (1 -a)-7'
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U

1-au o L 7• 1
SOO = s(- 70 a, = ) f 1 . (5.52)

1+a2.r 2-r (+a1 + (.

Its shape will then be as shown in Fig. 5.9. I

S(w)IS(O) 77

1.0 3

O<a< 1 Fig. 5.9. s(co) of AR(1). 1

52.2.7 Estimation of a and aC. When we are given a set of data, X.... X. with

numbers N, and the AR(l) model is to be fitted (the determination of order will be dis-
cussed later in Section 5.5), we can easily estimate the values of a andcr,2 by the
minimum least squares method as 3

N
I Xt X,-1

•=t=2
a N (5.53)

t=2

and the minimized residual sum is

f= N-1 (- Xt_1 )2 . (5.54)
t=2!

The same results can also be derived from Eq. 5.40 and Eq. 5.41 as

R(O) (5.55) 3
and '2.= (1 _ ̂ 2)g(o). (5.56)

Equations 5.53 and 5.55 have the same content as if the sample correlation were replaced 3
with h(0) and h(l). Obtaining a by the linear minimum least squares method from Eq.

5.53 is actually done by Eq. 5.55. Then, the variance ca 2 of e is estimated by Eq. 5.56. 5
522.8 Example of AR(1). Figure 5.10 is an example of the AR(1) process simu-

lated by an AR(1) model X,-0.5 X- = Et, where a = -0.5 in Eq. 5.7. In order to look
at the pattern of variations, at the bottom of this figure, a part (t = 100 to 250) of this pro-
cess is shown expanded on the time axis. Its readings are listed in Appendix Al as Table

I
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500-,

2,50-

I 0 N

I~-2.50-i
-5.00

0.00 75.00 15000 225.00 300.00 375.00 45000 52500 60000

5.00 "

I 202.50-

I 0 .00 f iViv(Ij

I _2.504

100 150 200 250
--4t

I Fig. 5.10. Simulated AR(1) process
X,-0.5 X,-. = e', c,: N[O, 11.

A1.2; pp. 251, 252, and 253. Here Et is a pure random Gaussian process N[0, I], and the
same process, which was generated as a pure random process AR(O) in Fig. 5.3, was
used. Figure 5.11 a shows the theoretical autocorrelation coefficient o(r) = R(r)/R(O),

from Eqs. 5.36 and 5.37 using the designed value ofa,= I anda = -0.5. Figure 5.11b is

the estimated autocorrelation function ^(r) = R(r)/R(0) from the simulated process in Fig.
5.10. An AR model was fitted to this process, and the order actually obtained was 1 by

I
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I

1.00 3

0.50 5

0.00o

-0.50 5

-1. 0 0  
. , I I I I I I U

0.00 7.50 15.00 22.50 30'00 37.50 45.00 52.50 60.00

IFig. 5.l1a. Theoretical.

1.00 1

0.50 1
0.00-

o+! I

-0.50 3
-1.00

0.0o 7.5o 15.00 22. 30.00 37.50 45.00 52.50 60.00 1
Fig. 5.11b. Estimated. I

Fig. 5.11. Autocorrelation coefficient for AR(1) process
X,- 0.5 Xj_= E,, e,: N[O, 11.
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the method of order determination that will be mentioned later in Section 5.5. Now with

the order as 1, a and c, were calculated from Eqs. 5.55 and 5.56, as = -0.50933 and

o• = 1.04646, which are close to the a = -0.5 and -- = 1.0 used to generate the process.

We also estimated the correlation coefficient P(r) = h(r)/R(0) from Eqs. 5.36 and 5.37,

using these a and aii .These values are so close to the theoretical R(r), or just the same in

io(r) = R(r)/R(O) in Fig. 5.11a that their drawing was omitted. Figure 5.12a is the theoret-

ical spectrum from Eq. 5.50, using the design values of a = -0.5 and ac - 1.

4.37-

3.75

3.12 -- 0.5
S2,. ,1.0

2.50

1.87-

1.25-

0.62-

0 0.06 0.'2 0.19 0.o5 0.o3 0.7 0.44 0.o50

Fig. 5.12a. Theoretical AR(1).

Mig. 5.12. Spectrum for AR(1) process X,-0.5 X, = ,, e ,: N[O, 1.

The estimated spectrum ^(co), with, = -0.50933 and67 = 1.04646 obtained by
model fitting and also by Eq. 5.50, is given as b in Fig. 5.12. For comparison, as c in Fig.

5.12, the spectrum .(W) was also estimated by the nonparametric method as the Fourier

transform of R(r) in Fig. 5.11b, using the Hanning window and maximum lag M = 60. It
is interesting that the spectrum estimated by model fitting is very similar to the theoretical
spectrum, Fig. 5.12a, of this generated process. On the other hand, the spectrum esti-
mated by the nonparametric method Fig. 5.12c is more wavy than the theoretical one,
although the fundamental shape is similar. The wavy fluctuations were found to come

mostly from the wavy fluctuation of the input white noise I et ) that is shown in Fig. 5.5c,

as the incomplete whiteness of the pure random process IEJ generated. In the figures,
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4.37 3

3.75 3

3.12 - - -0.50933

2 U,2 1.04646

2.50-

1.87-

1.25-3

0.62-

0.00 0.06 0.12 0.19 0.25 0.31 0.37--' co 0.44 0.50 3
Fig. 5.12b. Estimated by AR model fitting as optimum AR(1). I
5.00I

4.37

3.75-

3.12.

2.50 5
1.87-

1.25

0.62-1

0.00I
0.00 0.06 0.12 0.;9 0.25 0.31 0.37 0.44 0.50

"--co
Fig. 5.12c. Estimated by nonparametric method.

Fig. 5.12. (Continued)

I
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the 90% level of confidence interval of this estimate, based on the X2 -distribution of the
equivalent degree of freedom (here approximately equal to 27) as is explained in Section
2.5.5 is shown as vertical lines for reference.

5.23 Autoregressive Process of the Second Order, AR(2)

As was shown in the last section for the AR(l) process, the residual part et of A•,3 obtained by subtracting the linearly dependent part aXI from X,- 1,

4 rt = Xt - aXI-1 (5.7')

3was a purely random process uncorrelated with EI..i, Et-2 ...as in Fig. 5.13a and uncor-

related with X-2, X-3 ... as in Fig. 5.13b.

1 0

SFig. 5.13a. E, vs. e,-, for AR(I).

0
I t_2 .

3 Fig. 5.13b. e, vs. X,_2 for AR(1).

Fig. 5.13. Characters of e, for AR(1).

E~, E' C2r= E[,Et -X- 2 ] =-0.3 . 0 r ;60

If this relation does not exist and the residual c' , that is,

ECt' = Xt-a'Xt- 1, (5.57)

was linearly correlated with X, 2 as in Fig. 5.14, then

I117
11

-I•i iI



I
U

Et'= a X-2 + Et. (5.58)

The residual part c, =Ec -a, X. 2 is now a purely random process. Then inserting I
Eq. 5.57 into Eq. 5.58 gives Xt - a'Xt1 - a,' X,-2 = c.

t

X-2 I

Fig. 5.14. C; VS'. X,_2 for AR(2). 3
Here changing -a' =a,, -a,' -- a2,

X, + alX.-I + a 2X,-2 = cf. (5.59) I
The process, which satisfies Eq. 5.59, is called the autoregressive process of the sec-

ond order. Here, a1 and a2 are constant, It }, is a stationary pure random process, and we I
assume E[c,] = 0.

5.2 3.1 Solution of AR(2), Green's Function for AR(2). Starting from Eq. 5.59 3
Xt + a1 Xt-1 + a2X, 2 = cf,

we can solve Xt as the general solution of a second order difference equation, i.e., a
general solution equals a complementary function plus a particular solution. A comple-
mentary function is the solution of the homogeneous equation

Xt + a1Xt. 1 + a2Xt-2 = 0. (5.60) 5
The solution of this homogeneous equation is in the shape of

A, 4ut +A 2 U.' (5.61)

/A1,#2, being the roots of the characterisitc equationf(Z) = 0. The particular solution can
be obtained, using the backward shifting operator B, as

(1 + ajB + a2B 2 )Xt = et. (5.62)

Setting 
a(Z) = 1 + ajZ + a 2Z2 , (5.63) 1

a(B)X, = cl. (5.64)

If the quadrant f(?Z) - Z2 + alZ + a 2Z2 = 0 (5.65)

has two roots #1,/(2,
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( 1 I~ +,U2)B ,U1u 2 B2} I l, (5.66)

il +,U2 = -a (5.67)

#1#42 = a 2 ,

(1 -#LB)(I -,u 2B)X, = E,, (5.66')

then

Xt - t - Et El
a(B) (1 + IalB + a2B 2) (1 -/uIB)(1 -/u2B)

U-l 14/2 (1u-,B) (I-At2B)}Et

l-#2 j=l=o

S - .(5.68)

X is a particular solution. Therefore, if the expression of Green's function Gj is
used,

X,= Gj ej-j. (5.69)
j=O

Thus G. - #-u1 j . S2 j1 /a-#2 /1 -,42 IU1 #2 -,U1

= g91 l+ g2 U2 (5.70)

where g1 = Al
Al -/A 2

A2=9 2-=ll
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This solution X, can also be written as

X, = I Gj E,_j = Go,+ Gle,_ 1 + G2E,_2+ (5.71)
j=0

Equation 5.71 shows the AR(2) process is expressed by MA( 0o ), as was the case for 3
AR(1).

5232 Inverse Function for AR(2). To say the inverse function for the autoregres-
sive process has little meaning was pointed out for AR(1). Formally, however, for AR(2),
from

Xt + aXv,1 + a 2X-.2 = Ct,

(1 +ajB +a2B2)X= I (-Ij)XtIj = 0 J 2 2 .

=(-IoI0-1B .. lj Bý)Xt. (j-. )

Therefore 3
I = -1

= -a,

12 -a2

Ij=O for j>3. (5.72) 5
52-33 Stationality of AR(2). Returning to the general solution of X, we must con-

sider the behavior of the complementary function or the solution of the homogeneous
Eq. 5.60 that is in the shape of 3

A1, u +A 2 /9.

This complementary function represents the free oscillation of a forced oscillation system
which should die out over time t and become asymptotically stationary. For this condi-
tion it is necessary that

This means that the quadrant, as expressed by Eq. 5.65 equated to zero,

f(Z) = Z 2 +alZ+a2 = 0 (5.73) 1
should have roots less than I in their absolute values. Therefore, flZ) = 0 must have
roots inside the unit circle. These roots of f(Z) are the reciprocals of the roots of 3

a(Z) = 1 + a1 Z + a2Z2. (5.74)

Accordingly, a(Z) must have roots outside the unit circle in order for AR(2) to be asymp- 3
totically stationary.

I
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flZ) = O, i.e.,

Z2 +aZ+a2 = 0
has two roots

=, -= 2  (5.75)2

and these two roots/z1, #z satisfy Eq. 5.67. Therefore, from the condition
IuIl < 1, 1u21 < 1,

1> a2 > - 1 (5.76)

and, as A </A2<1,

#10~ -A12) < 1 -#U2.

Thus #1 +#2-,U1 42 <

and -a, -a2 < 1
a, + a2 >-1, (a2 > -a,-1) (5.77)

and as At,> -l1, -,UI< l1, -1 < ,U2<1

-(1 +/12)#1l < (1 +/'2).

Thus -- (Al +,U2)--XIL2 < 1

and al -a2 < 1, (a2 > a- 1). (5.78)
Therefore, as shown in Fig. 5.15, on a 0 -a, a2 plane, the region inside of A ABC is the
stable zone for al and a2. This stable zone is divided into two subzones.

1. When Eq. 5.73 has two real roots or coincident equal roots,2 1 2

a2> 4a2 or a2 < -a 1. (5.79)
4

This is subzone [ I ) in Fig. 5.16.
2. When Eq. 5.73 has unequal complex roots,

24a 2 , or a2 > 1a2. (5.80)-a2

This is subzone [ II] in Fig. 5.16.
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aa+a2 > a a,-a 2 <-

II
-1.0

A ;o e",., IFig. 5.15. 0--a,, a2 plane.3

I
Fig. 5.16. Stable Subzones [I ], [11I]; Q•) 0.) (J), (®.1

52.23.4 Autocovariance of A.R(2). From Eq]. 5.59 3
Xt + alXt.. + a2Xt.2 = •

assuming E[Xd] =0O, 5
0o r•0

{E[Et" g.-r ] =6t(r)o2= I2 r = 0

6(r) is Kronecker's delta function. 3
From Eq. 5.59

E[X,._, Et] = {~2 0(.12r = 0 a,

E[X, X1-.] + a1E[X,_. X,_€] + a2 E[X,_9 .X,.-r] = .[t X,-r].

I
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Therefore, when

r= 0 R(O)+ajR(l)+a2R(2) =a2 (5.82)

r= 1 R(l)+a1 R(O)+a 2R(1) =0 (5.83)

Sr= 2 : R(2)+ a R(1)+ a2R(O)= O (5.84)

r > 2 generally R(r) + aIR(r- 1) + a2R(r - 2) = 0. (5.85)

From Eq. 5.83

R(1)(1 + a2) = -a 1R(O) = -alOZ,

and therefore

R(1)= -a j a.. (5.86)
1 +a2

insertng this value into Eq. 5.84 gives

f2 1
R(2) al -- a2 2. (5.87)

~+a2 .

Substituting R(1), R(2) into Eq. 5.82, gives

2  (1 + a2) (5.88)

(1 - a2)(1 -al + a2)(1 +a, + a2)

This equation connects ra2 with a72. From Eq. 5.86

-Ral =. 2 . (5.89)
(1 -a2)(1 -a, + a2)(1 +a, +a2)

From Eq. 5.87

+al-a2(1 +a2) (2
1 +a2

+a2_a2-a2

(1 - a2)(1 - a0 + a2)(1 - al + a2) (5.90)

Equation 5.85 is a homogeneous equation with the same coefficient as the homogeneous
Eq. 5.60. Its solution is in the shape of
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R(r) = Bl At + Bu ,(5.91) 3
h],,u2 being the roots of Eq. 5.73, ftZ) = Z2 + a1Z + a2 = 0. BI, B2 are constants and are

determined by the boundary conditions, as 3
R(O) = r,ý R(1)= ( ~a2) C2~

Thus B, + B2 =- and BaI,+Bu2= + 1 B302
(12 ) (

Therefore B1 = u(I-'U2)(1 (5.92)+ )

B2 = IL2(1-_/U2) 0".(5.93) 1
(is2-JL1)(1 +4 2)

S(_,U 2 )#1 (1-/'/2 ,a

Then R(r)= 2 -'U 'U) g.2. (5.94) 3
If we need the expressionC2 from Eq. 5.88 3

2=1 +a 2  2
CX = (1 - a2)(1 -a, +a2)(1 +al + a2) I 3

I +Ltu2 2- (5.95)= (1-/•u ~2)-/2)(1-_,U2)

then

[/ui �-11 mU(X1 oir,. 2 2 (5.96)
(r) = (1-,U2)(1 -Jh(1 -, 2) (Al -A12)(1 -92)(1

This equation is in the form of R(r) = B1  + B 2 #4 3
There are a variety of cases in which, depending on the sign of•U1,0 2, the autoco-

variance function appears different in its tendency. I
1. Whena 2 : a12/4 (subzone [I] in Fig. 5.16), /Ul,/2 are real, and

a. if a <0, a2 >0 (region ( in Fig. 5.16), j >0, /Y2>0 0

and R(r) stays positive as in Fig. 5.17(A),

b. if a, < 0, a2 < 0 (region Q in Fig. 5.16), then /PM2 have opposite 3
signs,

I
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ilc. if a I > 0, a2 > 0 (regionO0 in Fig. 5.16), thenp I < 0, u 2 < 0 and in

this caseR(r) alternate signs by r as i Fig. 5.17(B), and

d. if a1 > 0, a2 < 0 (region® in Fig. 5.16), then IdI102 have opposite
signs.

Therefore, for a and c, the autocovariance function shows the patterns (A) and (B)
in Fig. 5.17, respectively. For b and d, the shape will be (A) or (B), depending on the
size of A1,/2 •

R(r) Rr

- -- ,'' / , ,' --.-.

-- / I r . .

R(f) ol AR(2);a 2 >a 4

(A): a, (a,< 0,a2 > 0) (B): c,(aI>O,a 2 >0)

Fig. 5.17. R(r of AR(2); a2 < a 1/4.

III 2. When a2 > a2/4, (subzone [I] in Fig. 5.16), 41,/#2 are complex and conjugate to
each other, and from Eqs. 5.67 and 5.75

Y I A12 = a2 , AMi = M2eir IA2 = i2e'ic (5.97)

and-aI =u1 +P2, which satisfies

a, -a 1 =2 /cosa. (5.98)

Thus cosE = -a 1 /2 Fa2 (5.98')

and AtI - #2 = 2 4a2 i sin a. (5.99)

3 Using the relations of Eqs. 5.97 to 5.99 in Eq. 5.94 gives

R(r) = ar/ 2 {sin(r + 1) a-a2 sin(r-1)a} a 2-
2 (1 + a2) sinoaX

Here again setting

tanO -a2tanor, (5.100)

3 gives

I1
I!
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R~)=ar/2{sifl(rUr+0) C2; (5.101)3

Equation 5.101 shows that R(r) has the form of a damping periodic function with period
21r/a and damping a2.

From Eq. 5.98'

a = Cos-'(-a,/2 ') (5.98") 1
so a2 determines the damping and aj/V-2 determines the period (see Fig. 5.18).

R(r) 3

Fig. 5.18. R(4 of AR(2);a 2 >aU/4.

As an extreme case of stationality, when a2 z 1, from Eq. 5.1000 = x,/2.
Therefore from Eq. 5.101 R(r) - cos r a q2. (5.102)

This is an undamped cosine curve and shows that R(r) does not decay with increasing r

but continues to oscillate in this case.U
523.5 Estimation ofa,, a2. From Eqs. 5.83 and 5.84

{aiR(O) + a2R(1) = - R(1)
a R(l) + a2R(0) = -R(2)

_R(1) R(1) _R(0) R(1)

R(2) R(O) R(1) R(2)
Thu al= ' (5.103)R(O) R(I) u R() R(1)

R(1) P(°) R(1) R(°) F3
or

I
I
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R(1) R(2)-R(O) R(1)

1- R2 (0)-R 2(1)

R 2(1) - R(O)R(2)
a2 = R2(0)_R2(1) (5.103')

By solving the linear equation on h 1, 62. we can easily determine the ti1 , 6' from the
autocorrelation R(0), R(1), and R(2). Equations 5.83 and 5.84 can be written in vector
form as

R 2 . a =-r, (5.104)

where

R2= [R() R(o) (5.105)

8= [h1, h 2j', r= [R(1),R(2)]'. (5.106)

therefore r (5.107)
R2

Thus j= [1,ah2]' can be determined from r = [R(l),R(2)]' and

R2=[R(O) R(O)1

ILR(1) R(O)

namely, from R(0), R(1) and R(2).

After ht, h2 are obtained, a2 can be estimated from Eq. 5.82,

6,2 = R(0) + 6 1R(1)- h2R(2). (5.108)

5.23.6 Spectrum of AR(2). From Eq. 5.59 fot AR(2)
Xt + alX,.-, + a2X,--2 = Et ,

Xt.r + alXt-r- + a2Xt-,- 2 = e,--r. (5.109)

Taking the product of both sides of these two equations, respectively, and then taking
expectation of each term,

E[Xt X. Xt ]+ a, E[Xt-, . X-.- 1 ] + a2 E[X- 2 "

+ aI E[X . Xt--r,-] + ala2 E[XI-I" X,_] + a2 E[Xt Xr_ 2 ]

+ a, E[Xt,. Xt.-1] + ala2 E[X,--,-X,- 2] + a2 E[X,-,Xt-2] = E[E t-r e.,

(5.110)

Therefore, for r d 0,
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Rxr){1 + 2a1+a +ai[Rx(r+ l)+R,(r- 1)]+ala2 [R,(r+ 1)+R (r- 1)]+ a2 [R,(r + 2) + R,(r - 2)] = R, (r) (5.110') I
According to the relation between autocovariance and the spectrum,

_l1 1kr I-4x*1) Ti

-•I R (r T 1)e-r = -I R (r T 1)e-ir l).e•5ia1 (5.111)

= sAw) ) eTIa

Then, transforming both sides of Eq. 5.110' by Fourier transformation and, taking into
account Eq. 5.111, ( 2 + e+ 2( ) +

s"'(t){l + al2+a2 +(a, + aa2)(e- + ew) +a2(e-•+e•)
x({1a+a+1 2 (512

= s'(0)) = I-0"., (5.112)
2.7r

s,(a)l +alCe-a)+a2 e-2j 2 1 -'1. (5.112')

2.7r

Thus sX(w) = 12 (5.113) 32n,1 1l+ale- + a2e-2iw2

from the function a(Z) of Eq. 5.74 3
2

orrI 12' (5.114) 3
or 2n I + a 2a 2+ 2(a l + aja2) COSw + 2a2 cos 20))

a2 1515
S27r (1-a 2 )2 +a2+2a1 (l +a 2)coso +4a 2 cos) (5.115)

Substitutingo foro2 in Eq. 5.88 gives

Srw) (1 -1a2)[(1 + a2)2 -a 2  (5.115')
S ) 2-r(1 + a2){(1-a 2)2 + a2+ 2a (I +a 2)cosw +4a2 (5.115'

From this expression, and setting ds(w) = 0,dw

I
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when a2 > 0 and al(1 + a 2) < 1, the spectrum has a peak at
4a 2

= co-si al(l+ a2 ) (5.116)

When a, < 0 and al(+ < I, the spectrum has a trough at the same wo as shown in

I 4a2

Fig. 5.19.

-I 0 0 WO -R WO 0 W I

Oe>0 Gig<0

Fig. 5.19. s(w&) of AR(2).

5.23.7 Example of AR(2). In Fig. 5.20, an example of the AR(2) process for a, =

--0.5, a 2 = 0.8,o72 = 1.0, expressed as X, - 0.5 Xy, + 0.8 XA-2=E, was generated overt = 1

to 600, using the same pure random process el as was generated in Fig. 5.4. A part of this

process (t = 100 to 250) is also shown with the time axis extended. Its readings are listed
in Appendix Al as Table A1.3; pp. 251,254, and 255.
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Figure 5.21a shows the theoretical autocorrelation coefficient o(r) = R(r)/R(O) of
this generated AR(2) process, calculated by Eq. 5.90, using the values of coefficients

a, = -0.5. a2 = 0.8, and the variance 4 = 1.0. Part b of the same figure shows the

estimated 6(r) = R(r)/h(0), actually calculated from the generated process. An AR(n)
model was fitted and its order was searched by AIC criteria and found to be n = 2. Then
parameters were estimated by the method described in this section by Eqs. 5.103' and
5.108. The results were

l~ =-0.54156, h2 = 0.81838, andi-- 1.04702,

which are close to the values actually used in generating the process. The autocorrelation
coefficients were estimated from Eq. 5.90 using these values just as were the theoretical
values. The results were quite similar and very close to the theoretical values in
Fig. 5.21a, so again the drawings were omitted.

1.00-

0.50

0.00-

-0.50-

-1. I I I

0.00 7.50 15.00 22.50 30.00 37.50 45.00 52.50 60.00

Fig. 5.21 a. Theoretical.

Fig. 5.21. Autocorrelation coefficient for AR(2) process
Xt-0.5 X.i + 0.8 X•,2: N'3, 1].
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1001 1

0.50-

0.00-

-0.50 1

-1.00.-1
0.00 7.50 15.00 22150 30.00 37.50 45.00 52.50 60.00

Fig. 5.21b. Estimated.

Fig. 5.21. (Continued)

Figure 5.22 shows the spectra, Fig. 5.22a the theoretical one given by Eq. 5.115,

Fig. 5.22b the estimated one from the fitted model AR(2), and Fig. 5.22c the one esti-
mated by the nonparametric method from the generated process (Fig. 5.20), using the
same maximum lag number (60) and Hanring window as for Fig. 5.5c and Fig. 5.12c.
The a and b spectra look very similar to each other and in this case c also looks similar to
a and b. In Fig. 5.22c, the 90% level of confidence interval of this estimate based on

theX2 -distribution of the equivalent degree of freedom (here approximately equal to 27)

as is explained in Section 2.5.5 is shown by vertical lines for reference.

I,I
I
U
I
I
I
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35.00-

i 30.00o

U a, -- 0.5
2S.00- a2 i 0.8

I (7.• -1.0

20.001

15.00

3 1000

5.00

000M
0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50*I -4 0

Fig. 5.22a. Theoretical AR(2).

1 35,00-

30.00-

d -- 0.54156

25.00 i2- 0.81838

i.C
2 - 1.047021 20.00-

15.00-

1 10.00

1 5.00

0.00
0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50I --*0)

I Fig. 5.22b. Estimated by AR model fitting as optimum AR(2).

Fig. 5.22. Spectrum for AR(2) process X,-0.5 X., +0.8 X.= ,, 2,: N[0, 11.

I
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35.00 I

30.00 I

25.00-

20.00

15.00 I

10.00 I

5.00-

0.00
000 006 0.12 0.19 0.5 0.o31 037 0. 0.'50

Fig. 5.22c. Estimated by nonparametric method.

Fig. 5.22. (Continued)

5.2.4 Second Order Autoregressive First Order Moving Average
Process, ARMA(2.1) U

More generally for AR(2), when the residual series c; of X,. obtained by subtracting
the part which is linearly dependent on X.-1,

ett = Xt - a l ft-i (5.117)

was correlated not only with XY4-2 as for AR(2) but also with c,_ as shown in Fig. 5.23. U

0" X-2  0 EjI

(a) 'E VS- Xt-2. (b) Ej vs. ft-I

Fig. 5.23. Characters of e; for ARMA(2. 1). I
"Thben 3

Th n E/= a' X I-2 + blel-1 + c, . (5.118)

II
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e, I is now a purely uncorrelated random process,
I E[•,.L,..,]=[ a r=0

0 r = 0 (5.119)

From Eqs. 5.117 and 5.118
Xt X-a, X,_, - a2 Xt-2 = bj¢,-j +,Et

this equation is expressed generally, changing -aI' toa 1 and- a2' to a2. as

X, + a1 X•_l + a2X,--2 = bier-1 + E,. (5.120)

When the process XY is expressed by Eq. 5.120, where a,, a2, and bI are constants and

c, is a random variable, this process X, is called a second order autoregressive first order
moving average process, ARMA(2.1).

Equation 5.120 can be written as

IC = Xt + aiXt-1 + a2X,-2 - biEr-1 (5.120')

This expression shows that, in order to compute the present value of e, we need c,_- I, and

when we compute Et recursively, we need the preceding values of c,.-I starting from the

beginnmg el_2 , E,-3" - ". This situation is different from AR(1) and AR(2) as shown by

Eq. 5.7 and Eq. 5.59 for which we do not need any preceding values of c-.i. This makes
the estimation of the ARMA(2.1) model much more difficult than that of the AR(1) and
AR(2) models. This difficulty can also be shown as follows.

From Eq. 5.120'

Ec-1 = Xt-1 + a 1X.-2 + a 2X,-3 - blot- 2 . (5.121)

Inserting this into Eq. 5.120 gives

I = -a1 X,-1 - a2X,-- 2 + b,{Xt,. + a1Xt-2 + a2XI-3 - blEt-2 I +C,

X,= (-a, +bj)X,.. 1 +(-a 2 +alb1 ) X-22 +a 2bAX-... 3 - bjEt-22 + E. (5.122)

Here F,-2 is still included, so it should be expressed in the same way as Eq. 5.121 by X.-2,

-3..." and IE .3, and so on. However, even with Eq. 5.122, when the dependence of X•

is expressed in terms of past X1, the equation is nonlinear in the unknown parameters a],
a2, and bI. As a result, the regression becomes nonlinear and requires a nonlinear least
squares method for estimation, which is different from the case of AR(1), AR(2) or the
general AR model as will be shown in Section 5.4, where all coefficients can be obtained
by the linear least squares method. The estimation of a,, a2, b, for ARMA(2.1) will be
shown later.

52.4.1 Green's Function for ARMA(2.1). Equation 5.120 is expressed, using the
backward shift operator B, as

(I + a1 B + a2B2)X =(1+btB)E,. (5.123)

I
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Then

X, (I + blB) EteX (I+a 1 B+a 2B2 ) t

(1 + bB) 3
(I( uB")( 1 (] u') 1 1

7bý) b,)

{( l1--j) + l-/U2Bj I

j-l 5 . 20 -.

G reen's function is A l + b 2 + b
Gj i -U P= / #yL2 -#1 2. (5.125)

When b, = 0, then Green's function will be that of the AR(2) already given as Eq. 5.70.
Green's function can also be easily derived as a solution of the homogeneous equation,

(1 + alB + a2B 2)Xt = 0 
(5.126)

with the initial conditions as follows. 3
Substituting

Xt = I 0j Et-j[> Gj BJE tI
j=o

into Eq. 5.123 gives I
(1 + alB + a2B2) Gj BjEt = (1 + bB).t

(1 +alB+a 2B 2)(Go+G 1 B+G 2B 2 +G 3B 3 + • •)ct= (1 +b1 B)Et. (5.127) I
Comparing the coefficients of B on both sides of Eq. 5.127 shows

I1
136 I



I
I

Go=1 Go= 1 (5.128)

Goal + GI=bi or G=b -a, (5.129)

Goa 2 + aIG1 + 02 = 0 G2 = -al(b1 -a,)- a7 (5.130)

I ...2 Gj =-a G.,-a2G,..2, j 2 2. (5.131)

Eqs. 5.128 - 5.130 are the initial conditions.

The solution of the homogeneous Eq. 5.126 is the solution of an nth order differen-

tial equation, that is, a linear combination of exponential functions,u j/u being the
characteristic roots, i.e., the roots of the characteristic equationflZ). Equation 5.73 in this3 case is of second order.

Therefore for this case,

g G,= gi u/+9g2 /•. (5.132)

Using the initial conditions given by Eqs. 5.128 and 5.129,

g1 + g2 = 1 (5.133)

1g4/1 + g2u2 =,ul +Y2 + bl, (5.134)

I whereIe 
(Al +Y42 = -a,)-

Solving gives

Y I -,U2 (5.135)

9 =g 2 + bl (5.136)
A12 -- U1

Inserting these values into Eq. 5.132, gives the same expression of Green's function Eq.
5.125 for ARMA(2.1). As will be discussed in some detail in the next section, in order
that the original process X,, which can be considered as an output of the input C , be sta-
tionary, ju 142 should be less than 1 in absolute value, I ul I <1, 1/42 1 < 1, where#u 4LA2
are the roots of the characteristic Eq. 5.73.

3 f(Z) = Z 2 +a 1Z+a2 = 0

/Yi, /42 = 2 2 (5.137)S2 2
for 91 +142 - -a 1 and //L2 = a2. When alI- 4a 2 < 0, then A,1 #2 are complex and con-

jugate to each other as

-2 = 2 (5.137')

1
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When this was expressed as

=ye (5.138)
af(L,2 r , 4 2f} 1/2 _-

= �U0i = 0U21= l'') + [ j = (5.139)

(o)= tari-1 F l -a o-1 Z-I -a, cos-11+#2 +(5.140)

Then inserting Eq. 5.138 into Eq. 5.125 gives

S~I

(Ui-2) (u 1 + b,)e ()42 + b 1)e-jl'w)J

7 jlc,,s, al-2b, sin jw } (5.141)I

Therefore, if putting -

4a•2 al? = U, (5.142)I

Gj= y J"+ U 2cos(jo) + 6) (5.143)

where 6= n~ a, -2 (5.144)
4aZ2-aJ I3

Now let V/1 + U2= V again,

Gj = y i V cos(jo + 6)

= Ve jic " eiay J + Ve" we -6 y i

= ng Y J+ g 2 YJ. (5.145)
ThenI

g1, g2 = Ve± Jiwe± -± Igle±i(jU +6). (5.146)

1
I
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Therefore Igi = V, (5.147)

Arg[g] = jw +6, (5.148)

From Eq. 5.143 Gj can be expressed as a damping cosine curve with damping y =

determmed by a2 and the penod by

2a_ 2,n
1 -a,

0) COS- -• "
2 ' a2

After a 2 was fixed, period is decided by aI and phase that is 6 different from that of
/•l~l• by 6 an-I a 2b1

Ju-1, 2  by tan' , as is shown in Fig. 5.24.

" ",,a(2 4a <01

\ %% - 4a 2 > 0

Fig. 5.24. Gi for ARMA(2.1).

Green's function and the autocovariance function are closely related as expected, because
using Green's function,

R(r) = E[XI X,10 ]
= ,Gj2 G .r. (5.149)

j=0

52.42 Inverse Function of ARMA(2 .1). In Eq. 5.123

(1 +aB + a2 B2)X = (1 + bB)Et.
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If we express er by an inverse function as

I, = ..)-, x,_j = -- 1B-,22 . . I - •X,
j=O

then Eq. 5.123 becomes (1 +a1 B +a2 B2 )X, - (1 +bB)(-1B -IiB 2 -B .- 1) B) -X I.
Comparing the coefficients of the powers of B gives

-to= 1 (5.150) 3
a = bi 1 -II

a2= -bj11 -12 (511
0 =- 13 - b112  (5.151)

0 = -Ij -bllj-t,j3 3

or

I, = b-al I
2 = - a2 - b1 (b1 - a) (5.151')

Ij=-b1j.-1, jZ 3.

The last equation of Eq. 5.151' is (1 + bi B)Ij = 0 forj.> 3. I
Therefore i = - b I.4-1. (5.152)

This Eq. 5.152 is the recursive equation for 4j.
52.43 Starionality and Iniertibility of ARMA(2.1). The stationality of ARMA(2. 1)

depends on the convergence of the free oscillation that comes from the complementary

function or the solution of the homogeneous equation. The homogeneous equation of

ARMA(2.1) is the same as the homogeneous equation of AR(2), Eq. 5.60, which is

X, + alX,-1 + a 2X.-2 = 0.

Accordingly, the relations required of the coefficients a, and a2 for the ARMA(2.1) pro-

cess to be stationary are the same as for AR(2), as has already been shown in Section

5.2.3 and in Figs. 5.15 and 5.16. a
On the other hand, the invertibility of ARMA(2.1) depends on the boundedness

of Et, t = I -Ij, _j, when j and from the relation derived as Eq. 5.152,

4j= - bl l j, Ibi should1 e less than 1. This requirement corresponds to the character

required for al of AR(l), laII < 1, so that the process AR(1) is stationary when
IGj J= aGj- 1.

5.2.4.4 Autocovariance Function for ARMA(2.1). From Eq. 5.120

Xt = -a 1 Xt.-I -a 2Xt- 2 + Et+ bje-...

Therefore, multiplying both sides by Xtr_, and taking the expected values, g

1
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I
E[X . X,• - aE[X,1, -Xr] - a2 E[ X,-2 -X,_r3+ E[e, X-Xr] + bjE[e,_ XJ-r]. (5.153)

Another way, by Green's function,
Xt = Gj c,-j = o , + ,-El + C- fl-2 +" Gj f,_j+

j=0

where GJ is expressed by Eqs. 5.128 to 5.131. Accordingly,

X,. = Go El r + GiEl.,-1 + G2Et.-2 + - • Gj Et-1 - j +

3 = Egt-r+ (bl - al)•-r-i + -a 2 -al(b -al)} E--,-2 +-

+ [-a 2Gj.2 -aIGj...I E •r. - . (5.154)

Using these relations from Eq. 5.153 gives

r=0 when R(O)=-a 1 R(1)-a 2R(2)+a2+(b1 -a,) bia2 (5.155)

r= 1 when R(1) = -a R(O)-a 2R(1)+ bla2 (5.156)

r > 2 when R(r) = - a R(r - 1 ) - a2R(r - 2). (5.157)

In order to express the values of R(r) recursively, we have to solve for R(O) and
R(1), using Eqs. 5.155 and 5.156 after substituting R(2) from Eq. 5.157. Then Eqs. 5.155
and 5.156 will be

(1 -a22)R(O) + al(1-a2)R(1) =(I1-alb, + baC (5.158)

aIR(O) + (1 + a2)R(1) = bloa,. (5.159)

i Therefore

(1 -alb,+b?) a+(1 -a 2 )

I b ((1 + a 2)
R(0) = _o__, (5.160)-(1 (-a2 ) al(1 -a2)[

U a, (1 +a 2)

j (1-a2) (1-alb,+b)2

a, b

SR) (1-a2) a((1-a2)

al (1 + a2)1

R(r) -aiR(r- 1)-a 2R(r -2) r a 2, (5.162)
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L(O) = 1 (5.163)

(1-a') (1-ajbi+b2)I

(a,) (Bj)
() (5.164)(1 -alb, + b2) al(1 -a2)[

(b1 ) (1 + a2)1

@(r) = -aL(r- 1)-a2V(r-2) r > 2. (5.165)

These are the autocovariance functions of ARMA(2.1). As was done for AR(2) in

Section 5.2.3, we can get the same results as the solution of the homogeneous equ3tion

because Eq. 5.157 is the homogeneous equation with the same coefficient as the homoge-

neous Eq. 5.126 or Eq. 5.60 of AR(2) expressed by Eq. 5.59.

Its solution is in the shape of

R(r) = B +B2I.U' (5.166) 3
f 1, #2 being the roots of characteristic equation

f(Z) = Z2 +ajZ+a2 = 0 (5.167) 1
or

I +yU2 = -a, I
/ilik2 = a 2.

B1 and B 2 are constants and are determined by the boundary conditions

B1 i +B2 = R(O)

After algebraic manipulation, B

Bi = af~gl g1 + g 9i-,u4) (1 -#1 42)

(5.167)B 2 = g'9 + G -1 1 t2

or, using the relations of Eqs. 5.135 and 5.136, I
2 (ul +bl) (mu1 +bl) _,2+ (6

1 4-2)c 1I-PI P2 (5.168)
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B2 = 2 # 2 ++ b_ 1 +b, (5.169)

and

2f + g2 2gl g2
R(0) = Cr2 92- •II1-9z2 1"-jUI2

=+ l2 + + 2(Ul + bl)A2 + b) (5

(1_ 1 -12 + -)1 0

1M=a' li (i-jl)2 (jul+bi2) I2(+bl)(u 51

"" -2 -
(01 (-#2 # l2 1 + ,U b)/2 1 ]

R (1) = '2 L -2) 2  (1--/? #? ---,Ui/12

(a2 JU2  {( +bl)2 (ul +bi)(u2 +b }.l) (5.171)S0" 2ýQ/ -,22 (t1--/,U22) 1 -. 0,1#/.2 "

Using the B1 , B2 in Eq. 5.166, we get the general expression for R(r).

The autocovariance function can be expressed using Green's function as Eq. 5.149.
Then, starting from the expression of Green's function

Gj= gi ju 1+92 Ji 2
the same results can be derived for R(r), although the manipulations will not be shown
here.

52.4.5 Estinations ofra, a2, bi, andorE2 of ARMA(2.1). From Eq. 5.157

R(r) = - aiR(r- 1) -a 2R(r- 2) r a 2.

Therefore, for estimation, with the sample values of autocovariances,

A(2) = -J 1R^(1) - 62R^(0) (5.172)

R(3) = -a^1R(2) - a2R(1). (5.173)
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Solving these linear equations gives

h(2) - R^(0)I

h(3) -R(l) R(3)R(O)- R(l)R(2) 3-•l)(2) (7
a, (5.174)

COe

L R(2) -R(1)I

-R(1) R^(2) I
-R(2) R(3) '2(2)- '(10(3) 62(2)_ -(1)6(3)J2= hI-R) - h(0)I =h•(1) OA2) 21_(2) (5.175)

-R(2) -R()3

After JI and h2 have been determined b, and 62 can be obtained by solving Eqs.

5.155 and 5.156. From them, Pandit and Wu36 showed that b, can be obtained as the
solution of a quadratic equation I

b21 + Cbl + 1 = 0 (5.176)

where I
C a, + 1a l + , (5.177)

-jI - (62 - )061 I

although this is quadratic in terms of b, and is not a linear relation.

5.2.4.6 Spectrum of ARMA(2.1). The expression of ARMA(2.1) is, by Eq. 5.120,
Xt + alXt.-1 + a2Xt.-2 = c, + b, c,,-1

or, using the backward shift operator B, by Eq. 5.123,

a(B)XI = P(B)Et (5.120')

a(Z) = 1 +ajZ +a 2Z
f�(z)= + biZ.

Therefore 5
Xt.-r + aIXt-.r-1 + a2Xt..r-2 = •E.--r+ bet-.-1 . (5.178)

Taking the product of Eqs. 5.120 and 5.178 and then taking expected values of each term 5
gives

1
I
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E[Xt Xe..,] + aj2E[X,....1 X1,-1] + a22E[X,-.2 -X,2

+ a IEIXt Xl,-.1] + a la 2E[X,..1Xt,- 2] + a2[X -X,,2

+ aE[X,.. Xt-1] + ala2ERX,.,..i X,..2] + a2E[X,1 .X,2

=E[E1 Egr], + b, 11*El-r-iI + bE[,Ef..... E

+ b1E[c,...- E1l ,

Rx(r)1 I+al+a2} +aiER,(r+1) +R,(r- 1)] +ala 2[R,(r+1) +R,(r-.1)]

+ +a2[R,(r + 2) + R(r -2)]

2&) 1 + b lb[& (r +1) + &(r -1)]. (5.179)

Here we use the relation shown by Eq. 5.111

= s(w) -e'w

Taking the Fourier transform of both sides of Eq. 5.179 gives

sx(CO)1 + aj +2+(a + aja Xe' + e") +a2(e'+

I+ (w1b2 +bi (ezD+ ew)}

= .4 ac~i + bl + bi(ew + eC')} (5.180)

sx~o))I + aie-w + a2 e"'i 12= -L,,2 11 + b, ei'j 2, (5.181)

Therefore SAOw = C2 e-6i2 (5.182)

,r_2 l1+ bCeH2 (5.182')

2j I1+a, i e+ a2e~iW I2

o. j I+ 2?+ 2b 1(e'iw + e)

2;{1 + a2+ a2 + (a, + ala 2)(e-4 + en') + a2(e-""w + iw

aCr 1+b2+2bicosw
2~ 1a++a 1 1a)ow22  co- 2 (5. 182")
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Here At is assumed to be 1, as was mentioned at the beginning of Part U. As a
result, S1(w) are obtained in the range - ;r < wv < ;r. However, if At ;e 1 and the

spectrum is calculated for -. 7r/At < w < ;r/At , then the spectrum is easily inverted into
S = a 2 t J~- 4"°)J 2

IA=t r ' ' (5.183)2a'r ý(e--a 1

52.4.7 Example of ARMA(2.1) Simulated. Figure 5.25 is an example of a gener-
ated ARMA(2.1) process over t = I to 600, when a = -0.3, a2 = + 0.4, b, = - 0.7, and

af2 = 1.0, namely by

Xt- 0.3 X1_1 + 0.4 X1_2 = ce- 0.7 c, 1 .

Here e, is the pure random process we generated as AR(0) in Fig. 5.3. Its readings
are listed in Appendix Al as Table A1.4; pp. 251, 254, and 255. The correlations and
spectra of this example are shown in Figs. 5.26 and 5.27. Figure 5.26a shows the theoreti-

cal autocorrelation coefficient o(r) = R(r)/R(O) of this generated ARMA(2.1), calcu-

lated by Eqs. 5.160, 5.161, 5.162, or 5.163, 5.164, 5.165, using the design values

of al = -0.3, a2 = 0.4, bl = -0.7 andci = 1.0. Figure 5.26b shows the estimated

L(r) = R(r)/R(O), calculated from the generated process.

We can see in Fig. 5.26b that the autocorrelation coefficient at higher lag r continues !
to fluctuate, even after the theoretical coefficient, shown in Fig. 5.26a, has died down and
converged to zero. On the other hand, the values at low lag numbers look very similar to
the theoretical values. An ARMA(n,m) process was fitted and its optimum orders n and I
m were searched by AIC criteria as explained in Section 5.5.4, using these autocorrela-
tions b, and actually were found to be n = 2, m = 1. Then the parameters were estimated
by the method described in this section as Eqs. 5.174, 5.175, 5.155, and 5.156. The values I
thus obtained are

= -0.37842, h2 = 0.40130, b1 = -0.73968, 2ri = 1.0400

which are not very close, but pretty close to the values actually used to generate this

process. The autocorrelation coefficients L(r) = R(r)/R(O) were then estimated using

these estimated parameters by Eqs. 5.160, 5.161, and 5.162, just as for the theoretical I
values. The results are similar and very close to the theoretical values shown in
Fig. 5.26a, so that drawings were again omitted.

1
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5.00]

I I It i

-5.00
0.060 75.ý00 150.00 225.00 300.00 375.00 450.00 t525.00 600.00

S-4t

5.00

2.50

0.00

-2.50-

-5.00'
100 150 200 20o

Fig. 5.25. Simulated ARMA(2.1) process (1) X,- 0.3 X. + 0.4 X,2 e," 0.7e, ,, c,: NfO, 1].
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1.00 3

0.50 5

0.00 3
-0.50 1

0.00 7.50 15.00 22.50 30.00 37.50 45.00 52.50 60.00

Fig. 5.26a. Theoretical.

1.00 1

0.50-

0.00-

-0.50w

-1.00- 1 f f

0.00 7.50 15.00 22.50 30.00 37.50 45.00 52.50 60.00

Fig. 5.26b. Estimated.

Fig. 5.26. Autocorrelation coefficient for ARMA(2. 1) process (1)Xf-0.3 X,,+ 0.4 X,2= E,-0.7c,_,, E,: N[0,11].
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Figure 5.27 shows the spectra, the theoretical one from Eq. 5.182" in Fig. 5.27a. the one
estimated from the fitted model ARMA(2. 1), using the estimated parameters in Fig.
5.27b, and the one estimated by the nonparametric method from the generated process of
Fig. 5.25 in Fig. 5.27c, with a maximum lag number of 60 and Hanning window. Spectra
a and b are similar and close to each other, and c fluctuated as expected. In another trial,
instead of the ARMA (n,m) model, an AR model was fitted to this generated ARMA(2.1)
process. The optimum order n was searched by AIC criteria as AR(n), and was found to

be n = 6. Its parameters a^ to a6 and d( were estimated by the method described in

Sections 5.4.3 and 5.4.4 as

J1 = - 0.35801, a 2 = - 0.64448, a 3 = - 0.45424,

a4 = -0.34915, a5 = -0.10554, a6 =-0.11502,

= 1.03499.

These values are listed in Table 5.1.

The value of d2 is very close to the theoretical value of ai = 1.0. The spectrum
of this fitted AR(6) is shown as Fig. 5.27d. It is interesting to find that this spectrum
Fig. 5.27d is very smooth, but its shape looks like the smoother shape of spectrum
Fig. 5.27c, the one estimated by the nonparametric method. In Fig. 5.27c, by vertical

lines, the 90% level of confidence interval of this estimate, based on the X2-distribution

of the equivalent degree of freedom (here approximately equal to 27) as is explained in
Section 2.5.5 is shown for reference.

As another example of the ARMA(2.1) process, the sign of the parameter b, in the
previous example was changed, and another ARMA(2.1) process was generated, keeping

a,, a 2, and U. the same,

a, = - 0.3, a2 = + 0.4, b, = + 0.7, U'2 = 1.0.

As for the previous example, its time history (readings are listed in Appendix Al as Table
A1.5; pp. 251,256, and 257), autocorrelation, and spectra are shown as Figs. 5.28, 5.29,
and 5.30.

In this example, the AIC criteria gave ARMA(3.1) as the optimum model to be
fitted, instead of ARMA(2.1), though the difference in AIC is not so large. The estimated
spectrum of this optimum ARMA(3.1) is shown as Fig. 5.30b, and for reference the
spectrum of the fitted ARMA(2.1) model is shown as Fig. 5.30e. ARMA(3.1) gave the
minimum value of AIC and ARMA(2.1) did not. However, the ARMA(2.1) spectrum Fig.
5.30e looks more like the theoretical spectrum Fig. 5.30a than does that of ARMA(3.1),
spectrum Fig. 5.30b. Spectrum Fig. 5.30d shows the spectrum of the fitted optimum
AR(n) model, where n appeared to be 8 by AIC criteria. It is interesting to find that this
spectrum Fig. 5.30d shows again the same pattern of variation as spectrum Fig. 5.30c
obtained by the nonparametric method. The estimated values of parameters
a1 a2," • • as ando6 are listed in Table 5.1, and 62 = 1.04911 is very close to the

theoretical value 6e = 1.0.
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5.00 a, -- 0.3
a2 - 0.4

b, - -0.7
3.75 a.2 - 1.0

2.50 "

0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50

Fig. 5.27a. Theoretical ARMA process ARMA(2.1). p
I

5.00 a, -- 0.37842
d2r - 0.40130
b, - 0.73968

3.75 a 2 - 1.0400

2.50" S~I

1.25 1

0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50

Fig. 5.27b. Estimated by ARMA model fitting as optimum ARMA(2.1). I
Fig. 5.27. Spectrum for ARMA(2.1) process (1)

Xt-0.3 X,.1+0.4 X,=Et-0.72,-., Er: N[0,1]. V
I
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3.75

2.50-

1.25-

0.00
0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50

-4 (1)

Fig. 5.27c. Estimated by nonparametric method.

6.25

5.00-

3.75 -

2.50 -

1.25-

0.00 . ...

0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50
-. )w

Fig. 5.27d. Estimated by AR model fitting, AR(6).

Fig. 5.27. (Continued)
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-2.50-~K
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0o. 75.00 150 0L 225.00 300.00 375.00 450.00 525.00 600.00

5.00- 

i

2.50- 3

0.00 I

100 150 s200 250
--4t

Fig. 5.28. Simulated ARMA(2.1) process (2)

X,- 0.3 X_ + 0.4 X2=c,+0.7c_, 4E,: N[O,1]. I
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1.00-

0.50

0.00_

-0.50-

-1.00 61
0.00 7.50 15.00 22.50 30.00 37T50 4b.00 52.50 60.00

Fig. 5.29a. Theoretical.

1.00

0.50

0.00-

-0.50

-1.00 I I I I

0.0 7.50 15.00 22.50 30.00 37.50 45.00 52.50 60.00

Fig. 5.29b. Estimated.

Fig. 5.29. Autocorrelation coefficient for ARMA(2.1) process (2)

X,- 0.3 X,.. +0.4 X,2= 4E,+ 0.7c E,: N[O, 11.
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2.501

1.25-

0.0010.00 006r 0.12 0.19 0.25 0.31 0.37 0.44 0.501

Fig. 5.30a. Theoretical ARMA process ARMA(2.1). !

Fg. 5.30. Spectrum for ARMA(2.1) process (2)

X,-0.3 X_, +0.4 X2= e+0.7c., c,: N[O,1]. 3
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I 8.75-

7.50]

6.25-

5.00- a -- 0.20995

- 62 - 0.30378

63- 0.15392
3.75 0.80692

_ = 1.0440

2.50-

1.25-

0.00-
0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50

- w)

Fig. 5.30b. Estimated by ARMA model fitting as optimum, ARMA(3.1).

Fig. 5.30. (Continued)
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Fig. 5.30c. Estimated by nonparametric method. 3
8.75 J

7.50 -

6.25

5.001

3.75 /

2.50

1.25!

0.00 . ..
0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50

Fig. 5.30d. Estimated by AR model fitting, AR(8).

Fig. 5.30. (Co itinued) 3
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7.50 i

6.251

-0.34559
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5.0017 a,-= 1.0558

2.50-

1 .2 5 -"1

0.00
0.00 0.06 0.12 0.19 0.25 0.31 0,37 0.44 0.50

Fig. 5.30s. Estimated as ARMA(2.1) [not optimum].

Fig. 5.30. (Continued)
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Table 5.1. Results of estimation by model fitting - [I].

Fig. No. Process ARMA (n.m) Generated Readings Estimated as Estimated Equivalent 3
in Optimum AR (N)

5.3 AR (0) n 0 0

m 0 A1.1 0
5.5 ARMA (0.0) al 1.0 1.04649

5.10 AR (1) n 1 1

a -0.5 A1.2 -0.50933 I
5.12 ARMA (0,1) O• 1.0 1.04646

5.20 AR (2) n 2 2
al -0.5 -0.54156 I
a2  +0.8 + 0.81838

5.22 ARMA (0,2) a,2 1.0 1.04702 £
5.25 ARMA (2,1) n 2 2 6

m S 1 0[Process (1)]I

a, -0.3 - 0.37842 a1 - 0.35801

a, - 0.64448
a2  + 0.4 A1.4 + 0.40130 a3 - 0.45424 p

a,- 0.34915 1
b, -0.7 -0.73968 as - 0.10554

a6- 0.11502 1
5.27 ARMA (2,1) r2 1.0 4.0400 o : 1.03419

5.28 ARMA (2.1) n 2 2 ( Nor ) 8 I
m 1 1 (OPTIMUM 0

[Process (2)]
a1  -0.3 - 0.34559 a1 1.00947

a2  +0.4 + 0.41494 a2-1.08338 I
b, +0.7 + 0.69856 a3 0.09614

a2 1.0 1.0558 a4- 0.50333 3
n 2 A1.5 3 as 0.40894

m 1 1 (OPTIMUM) a- 0.30626

a1  -0.3 - 020995 a7 0.17930
a 2  + 0.4 + 0.30378 a, - 0.09768
a3  0 + 0.15392

b, +0.7 + 0.80692

5.30 ARMA (2.1) o 2  1.0 1.0440 o : 1.04911

I
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52.5 ARMA(I.I), MA(2) ARMA(1.2) MA(1), and ARMA(2 2)

525.1 ARMA(.1). In ARMA(2.1), expressed by Eq. 5.120

X, + a, X,-1 +a 2 X- 2 =,E+b E, 1 ,

when a2 = 0, the process is called ARMA(1.1). We can easily get Green's function, the
inverse function, the autocovariance, and the spectrum function of ARMA(1.1) by modi-
fying those functions for ARMA(2.1) by setting a2 = 0.

52.52 MA(2). When a, = a2 = 0 in Eq. 5.120 and there exist b2 in addition to bl,
Xt = Et+ bi EI-1 + b2 'Et-2. (5.184)

This process is called MA(Z).

In this case Green's function is the function for expressing X, by MA (-). so to
speak of Green's function for a pure moving average process has no meaning. However,
formally,

X,= Gj E,-j
j=O

and

Go= 1
G1 = bi
G2 = b2
G =0 j>3.

In this case the inverse function for expressing Xt by AR (co) is meaningful. From Eq.

5.184,

Xt= (1 + biB + b2B 2) Et
(5.184')

here

fl(Z) = 1 + bjZ + b2Z2. (5.185)

Now supposing the quadrant

f 2(Z) = Z 2 + bjZ + b2 = 0 (5.186)

has two rootsv 1 andyV2, f 2(Z) = (Z-Vi)(Z -v 2 )

V-b V2 bi4b 2 ) (5.187)
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Then {1 -(VI + V2)B + v1v2B2}E le

V1 +V 2 = -bl I
VI V2 = b2

(I - viB)(l - v 2B) e = X,.

X t X , 1_-t /(B) (1 +blB+b2B2) (1 - vB)(1 -v2B)X

1 I V{l V2 t
VI-V2{ I}-vXB I-v2BI

~1 x.1-V +

= V (V, 1j -- 2 )Br "X,
Vl-2j=o

= fj+1- V j+J
- 2 X,_j. (5.188)

Therefore, if the expression of the inverse function 1j is used here as

E,= >(-Ij) X,•,3
i=0

l V= " -- "2 V l lj + V2 j= j_ 1 V2 1= _ _ _ V 2  " (5.189)

VI -v 2  V2-VI VI -V 2

This relation, as well as the way to derive it, is the same as that used for the derivation of U
Green's function for AR(2), already shown in Section 5.2.3. For invertibility of MA(2),

E1 must be bounded by t - t-j, j -. c. Then by the same logic as was used for AR(2), f
IvI I < 1, 1v2 I < 1 should stand for MA(2), and the conditions that must be satisfied by
b1, b2 are the same as the conditions that had to be satisfied by a,, a2 of AR(2). This con-
dition is shown in Fig. 5.31, which is similar to Figs. 5.15 and 5.16, where a,, a2 are
replaced by b1, b2. This triangular zone is again subdivided into subzones [I] and [111,
depending on i

b> 462[I] and b0 < 4b2[I]. I
I
I

160 I



Subzone [I] is divided into four regions:

OD b, < O, b2 > 0

o 'b, <0, b2 < 0

O b, > 0, b2 > 0

G bl >0, b2 <0

as shown in Fig. 5.31, just similar to Fig. 5.16.

ib2

1.0

-1.0 ":i•.:!: !: .*.. :: " 1.0 :

Fig. 5.31. Invertible Subzones [I] and [11]; (D. (2 9 ' 0 for b1, b,2.

Xt= Et+ blE(l+ b2 Et-2

Xt-r = Et.-r + b 1 6&-r-I+ b2 f .-r-2.

Tberefuzz, multiplying both sides of these two equations respectively and taking the ex-
pected values of each term,

E[X, " XI-r] = E[et " e,.r ] + b2 E[te..- " E-,..- )] + b2 E[Ec,_ 2 Et_,.2]

+ b {E[,E.. Et-rI+ E[et. Egt-r- 1 i}+ b2{E[Et-2 e,- I] + E[ -Et',--r2 }

+ blb 2{E[•E.t.1 "-,Er-2 ] + E[e-2. El.-r- ].}

Thus
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RO(0) = (1 + b'?+ bb) &(0) (5.190)

R.(1) = R.(- 1) = (blb2 + bl)RE(0) (5.191) 5
R.(2) = R.(- 2) = b2 .R,(0) (5.192)

Rx(r) = 0 r>3 (5.193) 1
because

b eas e = 2 { ,2 r=O 6r is Kronecker's delta function. UE[c, 't---r]--- r'O- L0, 0

R.(r) = 0 for r • 3. This is an interesting characteristic of MA(2). Generally, for

MA(n),R,(r) = 0 for r > n + 1. In the same way as for ARMA(2.1)

s(o)) = 2,,1 1 + ble-i'w + b2e-2w 2 (5.194) II
2.7rI

Estimation of bl, b2, ando2 is possible by solving the quadratic Eqs. 5.190, 5.191, and U
5.192 for b1, b2, and r.

52.53 Example of MA(2), MA(1), andARMA(22). As was done for AR(0), AR(1), I
AR(2), and ARMA(2.1) in the preceding sections, an MA(2) model was generated over
t = 1 to 600 by X, = e, + 0.2c,_1 + 0.8e,-2 as in Fig. 5.32. Fore,, the same pure random 3
process N[O, 1] as was generated in Fig. 5.3 in Section 5.2.1 for AR(0) is used. Its read-
ings are listed in Appendix Al as Table A1.6; pp. 251, 256, and 257. Figure 5.33a shows
the theoretical R(r) using the design values b, = + 0.2, b2 = + 0.8, and oa = 1.0, and
Fig. 5.33b the estimated sample autocorrelationR(r). It is interesting to note that theo-
retically R(r) = 0 for r a 3.

Figure 5.34a shows the theoretical spectrum given by Eq. 5.194 where b, = + 0.2,
b2 = + 0.8, anda2 = 1.0, which are all design values, and Fig. 5.34b the spectrum of the I
fitted model given by Eq. 5.194 where b, = 0.18662, b2 = 0.78000, anda 2 = 1.0816 calcu-
lated by the method described in Section 5.3.3. Of course again in this example, order
determination by AIC, to be explained in Section 5.5, gave the proper value of m = 2.
Figure 5.34c is the spectrum calculated by the nonparametric method. Here again the 1
90% level confidence interval is shown by vertical lines for reference. This was originally
generated as MA(2). However, as will be discussed in Section 5.4, often an AR model is
fitted generally to the processes taking advantage of the fact that the determination of I
parameters is much easier than for ARMA.

Figure 5.34d shows the spectrum of the AR model fitted to this process. The order
of this AR process is n = 13 and is naturally higher than 2 for m as MA(m). This result i
shows that, if this MA(2) is to be approximated by AR(n), AR(13) is the closest model to
be adopted. Again, :z is interesting to note that the spectrum Fig. 5.34d of AR(13) looks
very similar to the spectrum Fig. 5.34c estimated by the nonparametric method.

1
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5.00-

I
2.50I

0.00 75.00 15600 225o.00 300.00 375.00 450.00 525.00 600.00

51 
5.001

2.504 ~k~P

I I 
l

0.00 

Y,
3 -2.50-

-5.00~ 
1 T

100 150 200 250Iv
IFig. 5.32. Simulated MA(2) process X, =Et+0.2 e.j +0.8 E, c,: N[G,11.
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100 1

050-

0.00 5
-0.50•

-1.00
0.00 7.'50 15:00 2250 30.0 3750 4500 52.'50 6000

Fig. 5.33a. Theoretical. I
1-00 p
0.50 1
0.00-

-0.50 1

-1.00~
0.00 7.50 15.00 22.50 30.00 37.50 45.00 52.'50 60.00

Fig. 5.33b. Estimated. 3
Fig. 5.33. Autocorrelation coefficient for MA(2) process

X, = + 0.2 .el + 0.8 cE,_, E,: N[O, 1]. U

I
1641

i



p ~~6.25 
b .

5.00 . b2 - 0.8

3.75 -1

aI 2.50

* ~1.251

0.00 . . . . . ..0.000 0,06 0.12 0.19 0.25 0.31 0.37 0.44 0.50

-- Co

Fig. 5.34a. Theoretical MA(2).

6.25

5.00 o. o618r62
bz- 0.78000

- 1.0816

3.75

2.501

11.251

I ~0.00"
0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50

Fig. 5.34b. Estimated by MA model fitting as optimum, MA(2).

F ig. 5.34. Spectrum for MA(2) process X,= Et+ 0.2 c, 1 + 0.8 E2, E,: N[0, 11.
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6.25-

5.00 5
?~ 75£

2.50 3
1.25 K
0.00;;05

0.00 0.06 0.'12 0.19 0.25 0.31 0.37 044 050 I
Fig. 5.34c. Estimated by nonparametric method. I

I
6.25 -1 I

5.00

3.75

2,50 3
125

0.00 I

0.00 0.6 0.12 0.'19 0.25 0.31 0.37 0.44 0.50

Fig. 5.34d. Estimated by AR model fitting, AR(13). 3
Fig. 5.34. (Continued)
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Figures 5.35, 5.36, and 5.37 show the same kind of results for a generated MA(I)
process, X = Et-0.7O,-I, ,for E,: N[O, 1], i.e., for bl = -0.7, a,2= 1.0. Figures 5.38,

5.39, and 5.40 are also for an MA(1) process, X = E+0.7, + O, i.e., for bI = + 0.7,

ua = 1.0, just changing the sign of bj from - 0.7 to + 0.7.

Figures 5.35 and 5.38 show the time history over r = I to 600. Their readings are
listed in Appendix Al as Tables A1.7 and Al.8; pp. 251, 258, and 259. Figures 5.36 and
5.39 show the autocorrelation. Theoretically, R(r) = 0 for r _ 2.

5.00]

2.501

-0.00

-500 ,

0.00 75.00 150.00 225.00 300.00 375.00 450.00 525.00 600

5.00 -

2.509

0.00

-2.50

-5.0100 150 200 250
-- t

Fig. 5.35. Simulated MA(1) process (1)

X, = c,-60.7c E,: N[O, 11.
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1.00 1

0.50 mo.001m

-1.007.,.
0.00 7.50 15,00 22.50 30,00 37.50 45.00. 52.50 6000

Fig. 5.36a. Theoretical. 3

i~o0 I

1.001

0.50 1

0.00-

"-0.504 I

0.00 7.50 15.00 22.50 30.00 37.50 45.00 52.50 60.00

Fig. 5.36b. Estimated. 3
Fig. 5.36. Autocorrelation coefficient for MA(1) process (1)

X, = e,-0.7c.., c,: N[o, 1].
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Figures 5.37 and 5.40 are the spectra: a the theoretical, b that estimated by model
fitting as optimum, c that estimated by the nonparametric method, and d the spectrum of
the fitted AR(n) model. The n appeared to be 4 and 8 for Fig. 5.37 and Fig. 5.40,

respectively.

5.00 ", -- 0.7

3.75

i l 2.50-

0.00- ,.

0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50

Fig. 5.37a. Theoretical MA(1).

5.00-1 b,--0.70294I2, 1.0478

3.75

2.50

0 .00 . . . . . . . . . . ..
0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 o0s

II Fig. 5.37b. Estimated by MA model fitting as optimum, MA(I).

Fig. 5.37. Spectrum of MA(1) process (1)
X,= E,-0.7c., c,: N[O, 1].
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6.25t I
5001 I
3.75-

2.50I

1.25 -

0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50

Fig. 5.37c. Estimated by nonparametric method. I

I
I

6.25 '

5.00-

3.75-

1.25-_

0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50

Fig. 5.37d. Estimated by AR model fitting, AR(4). U
Fig. 5.37. (Continued) 3

1
170

3



-5.0 0 -

p , '

5000 4J1  JI- ~/ i~ ~ J
2.501 -

"~1

5.00-

-2.50-

-5.00-
100 150 200 250

--4t

Fig. 5.38. Simulated MA(1) process (2) X, = E,+ 0.7c.,, E,: N[O, 1].
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1.00 3
0.50-

0.00 L

-0.50 3
1.00. 100 7.'50 15.'00 22.50 30.00 37150 45.00 52'.50 60.00

Fig. 5.39a. Theoretical.

1.00

0.50-

0.00-

-0.50 1
-1.00- II

0.00 7.50 15.00 22.50 30.00 37.50 45I.0(0 52.50 60.00U

Fig. 5.39b. Estimated.3

Fig. 5.39. Autocorrelation coefficient for MA(1) process (2)
X~=,ft+ O.7E.-I, et: N[O, 1].I
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6.25

5.00 I

3.75

2.50 50

1.25

0.001 , .4,

0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50

Mg. 5.40d. Estimated by AR model fitting, AR(8).

6.25 = 0.74320

- 1.0442

5.00

3.75

2.50 -

1.*25

0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50
-4 CO)

Fig. 5.40.. Estimate as MA(1) [not optimum].

Fig. 5.40. (Continued)
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The values of parameters b1 (and b2, al if any) and of c2y estimated, and also of

estimated a ... ",, of AR(n) models are listed in Table 5.2. By comparing Fig. 5.37 and 3
Fig. 5.40, we can find the difference of the pattern of the spectra by the difference of the
sign of parameter bl. The same tendency appears in the difference between Fig. 5.27 and
Fig. 5.30. We can recognize this difference also in comparing the original form of the
generated processes in Fig. 5.35 and Fig. 5.38, and Fig. 5.25 and Fig. 5.28.

Figures 5.41, 5.42, and 5.43 show the results for a generated ARMA(2.2) model. Its
time history readings are listed in Appendix Al as Table A1.9; pp. 251 and 260. The fig-
ures are the same as for the other examples, so no explanation will be given here. The

estimated values of parameters ,i, b., andaci are listed in Table 5.2. The optimum m, n
for a fitted ARMA(n,m) model appeared to be n = 2, m = 2 by AIC criteria for this case
too. In this case E, appeared to be 0.84312, quite different from au = 1.0, but we could
not fred the reason or the error for their poor estimation.

0.00 75.00 150.00 225.00 300.00 375.00 450.00 525.00 600.00
tI

5.00]

2.502

0.00

-2.50

-5.00r
100 150 200 250 I

Fig. 5.41. Simulated ARMA(2.2) process

Xt-O.5X,.1 +O.8X. = c,+0.2c.. +O.80E.2, c,: N[O, 1].
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1,00

0.50

0.00

-0.50

-1 .00

0.00 7.50 15.00 22.50 30.00 37.50 45.00 52.50 60.00

Fig. 5.42a. Theoretical.

1.00

0.501

0.00

-0.50

-1.00 I I

0.00 7.50 15.00 22.50 30.00 37.50 45.00 52.50 60.00
--4'

Fig. 5.42b. Estimated.

Fig. 5.42. Autocorrelation coefficient for ARMA(2.2) process
Xt-O.5X,_ +O.8X.e = c,+O.2 E. ,+O.&.8 , et: N[O, 1].
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18.75 5
I a. -- 0.5

15.00 a, a2 - 0.8 3
b,- 0.2
b2 - 0.8

11.25 ! " ,- 1.0

7.50- II

3 .75 -i /

0.001 . . )I
0.00 0.06 0.12 0.19 0.25 0.31 0,37 0.44 0.50 U

Fig. 5.43a. Theoretical ARMA(2.2). I
18.75 5

&i -- 0.40678
15.00 6 2 - 0.80245

- 0.25973

b- 0.95205
11.25 4,- 0.84312

7.50 1

3.753

0.00

0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50

Fig. 5.43b. Estimated by ARMA model fitting as optimum, ARMA(2.2). U
Fig. 5.43. Spectrum for ARMA(2.2) process

Xt -O.5X,..,+O0.8X-2= 4t,+ O.a .E.I+0.8t .. , E,: N[0, 1].
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22.50

18.75

15.00

11.25

7.50

3.75

0.00
0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50

--.) )

Fig. 5.43c. Estimated by nonparametric method.

18.75

15.00

11.25

7.50

3.75

0.00 0

0.00 0.06 0.12 0.19 0.25 0.31 0.37 0.44 0.50

-4 (0

Fig. 5.43d. Estimated by AR model fitting, AR(1 5).

Fig. 5.43. (Continued)
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Table 5.2. Results of estimation by model fitting - [11].

Readings Estimated as Estimated Equivalent
Fig. No. Process ARMA (nm) Generated in Optimum AR 'N)

532 MA (2) n 0 0 13

m 2 20
a- + 0.374

b, +0.2 0.18662 a, -0.223 as -0.201
a- -0.719 a, -0.278

A1.6 a + 0.334 aw - 0.064
b .+0.8 0.78000 a4  + 0.551 a: + 0.167

a.5 -0.449 a,: + 0.001
at -0.301 a a -, -0.113

It
5.34 ARMA (0.2) C7 1.0 1.0816 or;': 1.05489

5.35 MA (1) n 0 0 4 I
m 1 1 0

[Process (1)] A1.7
b[ -0.7 -0.70294 a + 0.646 a3 + 0.299 I

a2 + 0.423 a. + 0.234

5.37 ARMA (0,1) a; 1.0 1.0478 a;: 1.04127 3
MA(1) n 0 0( NOT 8

5.38 m 1 1 OPTIMUM) 0 -
[P;'•cess (2)]

b, +0.7 +0.74320 - 0.49117
a2 +0.49117

a3 -0.30087
0r 1.0 1.0442 a4 +0.26673

a3 - 0.26548n 0 A1.8 1 a6 -0.18590

(O PT IM U M ) a.I0. 9 9a, - 0.09790
as + 0.08703

(a,) 0 +0.80208 1
b, +0.7 +1.5161

(b2) 0 + 0.55205

5.40 ARMA (0,1) 07 1.0 1.0359 a2 :1.03356

n 2 2 15

5.41 ARMA (2,2) m 2 2 10

a1 -0.5 -0.40878 a, -0.721 aO + 0.091 U
a2 +0.192 all -0.252

a2 +0.8 +0.80245 a3 +0.515 a11 -0.015

02 A1.9 a, -0.190 a 12 - 0.158

+ 0.2 + 0.25973 a5 - 0.456 a 13 + 0.015
a6 + 0.361 a1 A + 0.098

S +0.8 +0.95205 a, +0.177 als +0.10500 as -0.237

5.43 ARMA (2,2) a? 1.0 0.84312 a,2:1.06480 3
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52.5.4 ARMA(12) Process. The equation for the ARMA(1.2) process is

Xt+aX,-1 = Et,+ bl E,- 1 + b2 ,t-2, (5.195)

or. using the backward shift operator,

(1 + aB)X, = (1 + biB + b2B 2)Et. (5.195')

Analogous to ARMA(2.1), the stationality is determined by the left-hand side of this
equation, i.e., by the autoregression part. On the other hand, the invertibility is deter-
mined by the character of the right-hand side of Eq. 5.195'. Accordingly, the stationality
is the same as for AR(1) and the invertibility is the same as for MA(2). Green's function,
the inverse function, the autocovariance function, and the spectrum function can be ob-
tained in the same way as for ARMA(2.1).

5.3 GENERAL ARMA(n,m) PROCESS

5.3.1 General ARMA(n,m) Process, Its Stationaliry and Inverribilit"

Analogous to the preceding section, when

X, + aX,-1 + a2X_2 +"•• + a,X,e.l=, + b, - 1 + b2 .t-2 + + bm m,

(5.196)

the process X, is referred to as the nth order autoregressive, mth order moving average
process, ARMA(n,m). When the backward shift operator B is used,

(1 + ajB + a2B 2 +. + an Bn)X, = (1 + bB + b2 B2 + + b,,,B', (5.196')

a(B)X, = fl(B)c1 , (5.196")

where

a(Z) = 1 +ajZ+ a2Z2 +. • + aZ"

fl(Z) = 1 + b1Z + b2Z2 +• + b.,Z'. (5.197)

Green's function is derived from

"fl(B)x,= Gef....j= Et, (5.198)
j=0 ,a(B)

and the inverse function is derived as

Ii = - -a (5.199)
a X (B) X

j=0

By the same logic as we had for ARMA(2. 1), for this process to be stable, the char-
"acteristic function

f1(Z) = Z" + a Z' + a2Z"-2 +. • + an (5.200)

equated to 0, i.e., f1(Z) = 0 must have all its roots 1l,#, 2,- - ./ inside the unit circle,

ora(Z) = 1 + a1Z + a2Z2 +. - • + an = 0 must have all its roots outside the unit circle.

Conversely, for this process to be invertible, the characteristic function
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f2(Z) = Z"+ bZ'+ b2Z-2 + -•+b.. = 0 (5.201)

must have all its roots vj, v2 • - - v,, inside the unit circle or I
#l(Z) = 1 + biZ + b2Z' +" - • + b,,,Zn

must have all its roots outside the unit circle. 3
53.2 Green's Function for ARMA(n,m)

Green's function Gj, is defined as 3
Xt= I Gj cj.J=Go Et+G G ,-cl+. .+GEIJ+. I

./=0

= (Go + G1B + G2B +" + Gj BJ +" .E,.

Then Eq. 5.196' is

(1+aB+aB2 +. - •+a,,B")(Go+G 1B+G 2B 2 +. • .+G, Bj+. • .)E,

= (1 + ýIB + b2B 2  . • • + bm B m)Eg. (5.202) 1
Equating the same order of l-ackward shifting operator B for both sides of Eq. 5.202,

Go= 1 5
a1 Go + G, = bi

a2Go + Glal + G2 = b2I

amGo + Gia.1 + G2am_2 + + G = b,.

akGo+ Glak-1 + G2ak2 . + Gk = 0 for k > m, (5.203) 5
or

Go= 1 1
G1 = b1 -a,
G2 = b2 - (b1 - ai)aj -a2

Gm bm . -am. (5.204)

Explicitly Green's function can be obtained through the solution of the homogeneous
equation

Xt + alX- + a2Xt_2 +.•• a, X,, = 0 (5.205) 3
with initial conditions gi :..:a by Eq. 5.204, that is, in the form

Gj = gi/+2i+ y +29+_ gn Yn (5.206)3

where au, #2" ./z,, are the eigenvalues or the roots of the characterization equation

fi(Z) = Z" + aZ"- + a2Z2 + - an = 0. I

182 I



Especially when m = n - 1, namely for ARMA(n, n - 1), by Pandit and Wu36

(,U""'- I+blain'-2+• + bn,)

gi =
('U i -- U Id)('U i -- 2) ... (Ut -,U- I_ l) i -- A, I÷) .. '" IA--'Un)

i= 1,2,- • -n (5.207)

where the denominator is the product of all terms (u, -iuj) for i = 1, 2, n. excluding

the zero term (ui -ui) . Equations 5.135 and 5.136 are the special casesi= l and 2 for
n = 2. Each real root uj in Eq. 5.206 provides an exponentially dynamic mode like an
AR(l) model, whereas a complex conjugate pair of roots as in Eq. 5.137' gives an expo-
nentially decaying sinusoidal mode, whose frequency and decay rate can be obtained as
Eqs. 5.140 and 5.139 illustrated in Fig. 5.24 in Section 5.2.4.

5.3.3 Autocovariance and Spectrum Function of ARMA(nam)

For the ARMA(n,m) process,

Xt= -a1 Xt-,1 -a 2X,-2... - d aX[-n,+El+bl c- 1.+ b2 Et-2+ + bm +b ,,,.

Here, taking into account the relations

X,= IGj Ej.=J=Go c,+G, E,1 + G 2 Et-2+2 + . Gj Et-j+

Xt--r= Gj ft- r~j Go elt-r + G, ct -r -1 + G2 ret -r- 2 + "•"+ Gj ct-.r-j +"

I ~E[Et" .t-r c, 6r UE2,

multiplying both sides of these upper two equations term by term, respectively, and tak-
ing the expected values gives,
when r = 0,

R(0) = -aiR(l)-a 2 (R)(2) .-.. -a,.R(n) + (G + b1G1 + b2G 2 +" .hmGm) c

when r = 1,

R(1)=-aIR(O)--a2R(1)-a 3R(2)-* .. -a,,R(n-1)

+ (bGo+ b2G1 + b3G2 +" . + bmGntl)U2

R(2) = .........

when r = m,

R(m) =-aIR(m - 1) - a 2R(m - 2) +. • a, R(m - n)

+ bm Go cc
and

R(k) =-a R(k - 1)-a-)R(k- 2) +. +a,,R(k-n). k Ž m + 1. (5.208)

Analogous to the case of ARMA(2.1), R(O) to R(k), k -< n + 1, can be obtained by solving
these simultaneous equations. Also, if necessary, we can get the general expression for
R(r), k -> m + 1, by generalizing the case of ARMA(2.1). By the same procedure we
used for ARMA(2.1), the spectrum s(w) for the ARMA(n,m) process is naturally
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obtained as

s(o)) = (5.209)2-7 I a(e-)2

2 + + biw+b2e_2i + +. be,, 2
r ~ 2(5.209')

27 l +ale-4w +a2e-2i+- + " a,-l-ni• I

5.3.4 Estimation of a, ... a,, b, ... b, of ARMA(n,m)

For starting values ofa I ... an, b, • - • b•, we can get a first approximation of the
estimates from Eq. 5.208. Namely, with the use of n simultaneous equations on m

R(m+1), R(m+2). . .R(m+n) fork_ :m+l

autoregressive parameters a I, a2," • • a, can be estimated, although the less reliable val- 5
ues of autocorrelation at larger m + n must be used. Then, inserting these values in the
first (m + 1) equations in Eq. 5.208 on R(0), R(1) ... R(m), m + 1 unknown parameters

bm and ao can be estimated theoretically by solving the nonlinear equations on

these parameters.

The necessity for solving nonlinear equations can be shown as follows: In the
expression for ARMA(n,m)

X, + alXj- 1 + a2Xt-.2 + - + a,X, = Et+ be + •+ +bmE .-,

using recursively

ft-- = X,-- 1 + alXt- 2 + a 2Xt_3 + + a,,--X-- + anXt-.

- blEt-2- b2Ct-3 ... bmt--

in Xt = -a1 lX.. 1-a 2Xt-2.... -aX,-. I

+blEt-l+b2Et-2" - +bmj•t.+Et,

X= (-a 1 + b1 )Xt-,1 + (-a 2 -alb)Xt-2+" + (-a,.-a,,-b1 )X,..--ablXt--- 1

+ (b2 - b2 )Et-2 + (bib2 - b 3)t-3 +" + bibmnl-m-1 + Et. (5.210)

We still have the terms E,-2 ,E- 3 " - that should be expressed by Xf-2 , X, 3 . ..and also

C,2 , E,-3 . When the dependence of X4 is expressed in terms of past Y•, the equation will 3
be nonlinear in the unknown parameters a1, a2 • • and b1, b2, - • •, because their prod-
ucts and squares are involved. Thus, the regression becomes nonlinear and requires a
nonlinear least squares method for estimation.
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Actually, however, it is troublesome to solve the nonlinear equations, and other ap-
proximation methods are used. An approximation method introduced by Pandit and Wu36

is to use the inverse function, taking advantage of the linearity between the unknown
coefficient and the inverse function as shown in Eq. 5.150 for ARMA(2.1). In this meth-
od, we first fit the pure autoregressive model of an appropriate large order AR(k) to this
ARMA(n,m) process and then use the coefficients of this AR(k) model as an approxima-
tion for inverse functions at larger values of k. Then from the equation that connects bj
and Ij, we can gradually improve the approximation of bj and aj and finally adjust the
results from the viewpoint of invertibility. The procedure is rather complicated, and care
is necessary to get good estimates. In any case estimation of the coefficients for ARMA
(n,m) is not necessarily easy.

Estimation of the parameters for the pure autoregressive process AR(n) is more
straightforward, as we saw for AR(2) in Section 5.2.3 or as will be shown in Section 5.4,
since it can be done through, linear regression.

In practical applications of the model fitting technique, the pure autoregressive pro-
cess AR(k) is frequently used as the model to be fitted, although the order k sometimes
becomes a little larger than n of ARMA(n,m), which should be the actual model to be
fitted to the process under consideration. We saw this tendency in examples of
ARMA(2.1), MA(2), MA(l), and ARMA(2. 2) shown in Figs. 5.27, 5.30, 5.34, 5.37,
5.40, and 5.43.

53.5 Adoption ofARMA(n, n - 1), ARMA(2n, 2n -1)

As was mentioned in Sections 5.2.2 and 5.2.4, Green's functions and the autocovari-

ance functions are in the form for AR(l): Gj = al = y'; R(r) = Byi and for ARMA(2.1):

Gj = g I + g2 U4; R(r) =ByJ + B2 uJ, and show increasing complexity as the order

increases. For AR(2), as derived in Section 5.2.3, Gj and R(r) were of the same type as

those for ARMA(2.1). However, as was mentioned in Section 5.2.4, ARMA(2.1) is rec-
ommended by Pandit and Wu36 as a more general process that is made up of two expo-
nentials. The other reason for preferring ARMA(2.1) over AR(2) is the fact that the
ARMA(2.1) process is more closely related to the system that is governed by the second
order differential equation, as will be explained in Section 6.3.2. In the same way, for a
more complex process made up of three exponentials, AR(3.2) is the most general pro-
cess. Extending this relation, ARMA(n, n-1) is recommended by Pandit and Wu36 as the
most general process when the process is represented by nth order dynamics as

3 Gj=gi ju +g 2 9 J+" " +g .J+g ; R(r)=B 1 4sJ+B2 J+

The reason that n - 1 should be the order of the moving average part is also shown in
Pandit and Wu.36 Furthermore, as they pointed out, empirical experience indicates that it
is better to increase n in steps of two and fit ARMA(2n, 2n - 1) models for n = 1, 2, 3.

Also, if a complex root appears among #j, and a,, a 2 ... are to be real, complex roots

must appear as conjugate pairs as was shown for ARMA(2.1) in Section 5.2.4. Therefore
to fit an ARMA(2n, 2n - 1) model is more practical than to fit an odd order model.

I
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5.4 GENERAL AUTOREGRESSIVE PROCESS AR(n)

5.4.1 Adoption of AR(n) Model

The general autoregressive model

X, + ajX,-l + a2X*_2 +- + a, = Er (5.211) 1
is considered to be a special case of the general autoregressive moving average model
ARMA(n,m) when m = 0. If invertibility is satisfied for the ARMA(n.m) model,

= XI- I X,-1 - 2 Xt-2- -.. -- j Xt ...

This expression means that ARMA(n,m) is transformed into an autoregressive model of
infinite order AR( c ). Practically, if a large enough n is taken, almost all of the ARMA

(n,m) process can be approximated by an AR(n ') process if we assume invertibility.

The general character of the AR(n) process will be summarized here, as AR(n) is 5
the most common model used in the practical application of model fitting techniques as
was already mentioned in Section 5.3.4. The estimation of parameters is much easier for
the AR(n) process than for the MA(m) or AR(n,m) processes.

5.4.2 Green's Function of AR(n)

The AR(n) process is expressed as I
X, + a1 X,-1 + a 2X.~2 + + an = E, (5.211)

(1 + aIB + a2B2 +. -• + aB)Xt = c, (5.211') 5
a(B)X, = el. (5.211")

Here

a(Z) = 1 + ajZ + a 2Z2 +. an Z". (5.212)

Using Green's function Gj gives 3
Xt= IGj E-j= I Gj Bi Et=Go+G, el-..+G 2Et_2 + +Gj Ec.j

j=0( 0

= (G, + G1 B + G 2B 2 +" + GjBJ + .•)Et (5.213)

Et (5.213')

(I +aB+a2B2 +- - .+a,,B')

Equating the same power of B on both sides,

I1
I
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SGo = 1

Goal + G1 = 0

a2Go + a1 G1 + G2 = 0

a3Go + a2G1 + aIG2 + G3 = 0 (5.214)

anGo, + a,-1Gl +" • + Gn, = 0,

or

G1 =-an
2= -a2 + al

IG3 = -a3 + a2ai + al(a2-a2) =-a 3 + 2ala 2 -a . (5.215)

Generally

(a,,B" +- • -+ I)G,, 0.

Explicitly as shown in Section 5.3.2

Gj = g1 ju + g2 t42 n (5.216)

wherej.l • • ,, are the eigenvalues or the roots of the characteristic equation equated to
zero as

fl(z) = zn + alzn-l +- •+ a, = 0 (5.217)
and n-1

gi= (5.218)
S(/•i--u1)(/1 --U2)".. . (sgi--Ui.-1 )(U i -- #i+1) . . .(Ui--/n)

where the denominator is the product of all terms • •j for j = 1,2... n, excluding

the zero termpi -pi, as the special case where b- b2  3 bm 0 in Eq.
5.207.

5.4-3 Autocorrelation and Spectrum Function for AR(n)

For AR(n)

Xt= -alX 1 - a2Xt-2 ...- at-. + cf.

Therefore

Xt-r = -aiXj._ - a2X,--2.. a,,- . + Eg..q. (5.219)

Multiplying both sides of these two equations, respectively, taking the expected values
gives
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R(O) = a aIR(1 a2R(2) ... a,, R(n) + or,
R(1) = -a R(O) - a2R(1) ... aR(n- 1)-

(5.220)

R(k) = -ajR(k- 1) -a2R(k- 2)-.... a,,R(k- n)

k=l I -n. 5
Using the backward shift operator B gives

B'R(k) = R(k -j). (5.221) 1
Then the last equation in Eq. 5.220 is

R(k)= ( ai BJ) R(k) (5.222)1

or I
" (aj BJ)R(k)= 0. (5.222') 3

j=0

Equation 5.222 is very similar to the expression of the homogeneous equation of the

process itself in Eqs. 5.211 ', 5.211" when c, = 0 as I
a(B)R(k) = 0. (5.222") 5

Therefore, as was Eq. 5.166 for AR(2), the general form of R(k) is

R(k) =B 1 Bk + B 2 p4+" "+B n. (5.223) 3
Here #1,,U2 .. • ,- are the eigenvalues, and B1, B 2, B, are constants that can be

obtained theoretically from the boundary conditions 3
R(O)=B 1 +B 2 +- . •+Bn

R (1) = B ,1 jl + B2 42  + • + B n/. j n(5.224).

I
The spectrum is, as given by Eq. 5.209,

S(O_) = "2 0"2 12' (5.225) 1
2;r I a(e-)t2 2a-r 1 ++a le-w+a 2 e'-+... +anCeni7 o2

1
I
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5.4.4 Estimation of Parameter a, ... an and t

In this section, we assume that the order n of the autoregressive process AR(n) is
already known. Determination of the order n is discussed in the next section. Here the
statistical considerations for the estimation are treated in some detail, compared with the
case for AR(2) in Section 5.2.3. As the most general type of AR(n) process, we assume
the nonzero mean process to be

(XI -u) + al(Xt-, -u) + a2(Xi-2 -U) +"•• + an(X-.n -Y) = 6,. (5.226)

By analogy with the multivariate regression of X, with XY, - I • Xt -.n, with regressive

coefficients a,, a2. . a,, and residual error 6, , we can use the least squares method to

estimate a I a,, #u,ande:, that is, to minimize

N
2a~pl,al ...an) = E t2

= n+1

N 
2 .

N {(Xt-Mu)+al(X_1.- its)+. . +an(Xt.,-,L)t. (5.227)
t = n+I

The reason for this lower limit n + 1 is that we do not have observations X0,

X-1,. •X_ k (n. - ) from which to derive co," • • -,n. N is the total number of observations

of Xt. The residual error e, is assumed to be Gaussian and independent of each other.

Accordingly, the joint probability distribution of EI..." C,, is

1 )N-n Et

P(n+l'En+2"" "N)= 1- e 2a)

r ,=n+

= (7XP N ZE2] (5.228)

= (ii) -n exp[-2 Qý',al,a2  .a,)]. (5.229)

Here the variables are transformed from (En+1 ,IE+2" . .. E') to (X-+I,'+2, • XN)

using
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En+1 = (Xn+l -#) + aI(Xn -,u) + a 2(X,- 1 -O)" + an(X1 -iU)

En+2 = (Xn+2 -At) + al(X,+1 -At) + a2(Xn -,U) +" + an(X2 -Yt)

(5.230)

EN = (XN -iu) + al(XN.1-1-u) + a2(XN-2 -U) +" + a,(XN_.n -14). I
From Eq. 5.230 the Jacobian to transform p(E, + E, + " ) to p(X,, 1 ,X,,+2 . Xv)

is

J W n+l En+2" . ."EN)

a(X.+I Xn+2 ... XN) - (5.231)

Therefore from Eq. 5.229,

"P(Xn+ 1, Xn+2,X X) N

exp-1 {(Xt-it)+al(Xt-.-it)+' "+a,(X-. -i)} 2u)e /2aE2 =+I I
t=ii+1

= (ip )N l l{Q ,,a an)] (5.232)\2 2
This is actually the conditional joint distribution, given that the initial observations
X, ... X, remain fixed at their realization X, ... Xn. Here n is assumed to be
relatively small compared with the number of observations N. We can then use this
p(X .,I ," • • X N) as the adequate approximation of likelihood function of

l,al,a2. - • a., given the observations XI, X2 . Xv. Then the log-likelihood

function L is

L(,l , a,, a2, • an,) = log P(Xn+lX,+2, XN) 3
- nlog(2x r2- .II(Xt-,u)+aI(Xt_--u)++ . +an(Xt_. -U) 2 .

2 202 r= n+ t 'i'' I
(5.233)

Therefore the maximum likelihood estimate for I1al •... an is to maximize L, i.e., to

miiizeI N2

Q(,l, al,a2...-an)= I• N (Xt-y)+al(Xt..1-1)+.. .+an(Xtn-/.-)1 2 . (5.234)

S-n+l
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This is the same as adopting the least squares estimate as already mentioned. That is
obtained from 8Q = 0

* and

as

(t( {aXt-1-)+ai(X j Xj-1 u)+. -).+an(Xt.n-#)} = 0 (5.235)

I and

I {(n l u)+a(,. l)+ /,.~j) ~X..,-s (,. (5.236)

From Eq. 5.235

X , A y + A Xa (5.237)S~~~1 +a 1 +a 2 +" +* ,

where

1_1N

t~+1

When n is small compared to NI, Y. will be close to X,= -- iXtand Eq. 5.237 will be
N -

4•= X. (5.238)

From Eq. 5.236

I {(X,-X)+ ,1(X.,_-X) +. - ,x,_-r ..- +hn(x (_n-- } x
t=nn+l

I
Here, if we approximate further, under the assumption that k is also small in relation to N,

i then

7_.(x,-k-)(x,_j-X) = Nhti-k),
I t=n+l

and Eq. 5.236 becomes
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(j) + alR(jl- 1) + •- • ajh(0)• + a,,R(j- n) = 0 (5.239)
j=l. . .n. I

From this relational,,a2," 6 • a"•,, can be estimated by solving the simultaneous

equations

aIR(O) + a 2R(1) + a,R(n - 1) =-R(1)

a1 R(l) + a2R(0) +. + a,,R(n - 2) = -/(2)

(5.240) I
,aR(n- 1)+a 2R(n-2)"+ - +a ,(O) =-R(n).

This can be transformed, using the vector expression, to U
(a,,a2," * a,)' = a (5.241) 3

{R(1)R/(2). . .•(n)' r (5.242) 1
R(0) R^(1) • R(n- 1)

R(1) , (0). • -/(n-2) I
(5.243) 1

R(n - 1) R(n - 2) •(o)

R -- r. (5.244)

Therefore

A- . (5.245)
R,

Equation 5.239 or 5.240 is identical with the Yule-Walker equations. 3
All these relations mean that, if the approximations as given here are introduced, the

maximum likelihood method can be replaced by the least squares method, and the least
squares method is reduced to get the solution of the Yule-Walker equations. Priestley23
describes in more detail the precise estimation through a rigorous likelihood function.

I
I
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5.4.5 Estimation of ac for AR(n)

2,
or is estimated as the variance of the residual error e, from Q = Er.

Because (N - n) observations are summed and n + 1 parameters (u and na, 's) have been

estimated, the unbiased estimation is

"e2 =1 A A

(N-n)-(n + 1)Q(4,ajA2'

I N

N-n
tWenn+l

N- R(O)+ aR(1) + - + a, R(n)] (5.246)
N-2n+ 1

When n << N,

"62
f = R(0) + ajR(1) +. + a,,R(n) (5.246')

This result is the same as we obtained from the first equation of Eq. 5.220.

5.5 DETERMINATION OF THE ORDER OF THE FrITED MODEL

As was explained in the preceding sections, the process becomes more complicated
as the order increases. Thus AR(2) is more complicated than AR(1) and ARMA(3.2) is
more complicated than ARMA(2.1). Estimation of parameters has been discussed in
each section, so here only the determination of the order will be discussed. Several
different methods have been described by Priestley.23 The MAIC method developed by
H. Akaike is now considered to be the most reasonable from the point of view of statisti-
cal considerations and of information theory and is explained and recommended in the
following section.

5.5.1 Residual Error Method

The change of residual error, expressed for example by Eq. 5.246' for AR(n), is
investigated. If the order is far smaller than the true order, a2, the residual error, will
decrease considerably as the order increases from j to n. From there on, the decrease in
residual error may not be significant but will remain at the same level. Point n is adopted
as the proper order of the model.
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n -

Fig. 5.44. Residual error.

Sometimes, however, it is not easy to determine the order because the rate of change
does not show clearly by this method.

55.2 Partial Autocorrelation Method

If an, denotes the ith autoregressive parameter of an AR(n) process. then the auto-

correlation coefficient ei is from Eq. 5.220,

=i = - anlQ 2ei--2 an i-

i= 1,2,- - •n (5.247)

which gives the Yule-Walker equations, I

QI = -anlgo-_an~l .. annQn-I

02 =-anlpl-an2o " "-ann~n-2
(5.248)

Lon-=angpnn-1-an.•n-2 •"-ano

Then, the last coefficient a., of the fitted AR(n) model is called the partial autocorrelation

P.' for n = 1, 2.. •, and will be used37 to suggest the order of the AR model.

Since c= 1, from Eq. 5.248,

-all = el 91'

01 Q 2 O2-2I
-a22 = -= 2 Q2' (5.249)

C1 1 -L I

I
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1 eC Q2

Qi 1 Q1 e•--3 02

1 eon-

en-1 Qn-2 •n-3 Q I e n
- ann = - 0,, (5.249')

1 eI e02 "..e -2 Qn-1

Q1 1 Q. "•-3 Qn-2

1 0!

I,-1 Q-,-2 en-3 L0 1

A plot of I'02' " L"o•n' against n is called the partial autocorrelation function diagram.

If the true order was n, ek' or -ak k should vanish for k > n and the plot of the partial
autocorrelation should show the real order n.

For this purpose, a recursive method for calculating on' when - ann are estimated

from Yule-Walker equations has been given by Durbin 39 as

Uan+,j = anj-a n+1,n•l an.n-f+l j = 1,-. . n (5.250)

LO(M + 1)- h n~jo(n + 1 -j)

Am ~ ~~ --- J= 1

,jni (5.251)
1- a •,,j LOO))

j=l

5.53 Visual Inspection of the Autocorrelation

As has been shown in the preceding sections, the types of models and their orders
are well reflected in the pattern of the curve of the autocorrelation function. For example,
for the MA(m) model, the correlation cut down to 0 after the lag m, and for the AR(m)
model, the correlation has the form of damping oscillations. Box and Jenkins37 have
developed this method and showed many examples of estimating the order from these
patterns. However, it requires skill and long experience to be able to estimate the actual
order correctly by this inspection.
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5.5.4 Akaike's FPE, AiC, and BIC Criteria

FPE. Akaike4° first proposed computing the final prediction enor (FPE- in deter-
mining the order n of AR(n) as

N+q
FPE(q) = - 5.252)=N-q • .-

where N = number of observations to which the model is fitted, q = the order of the AR
model

eJ(O)+aiR(1)+. +a R(q)l

and adopting as n the value of q that minimize the FPE, as in Fig. 5.45.

FPE (q)

° It min .

n q

Fig. 5.45. FPE vs. q.

AIC. Later Akaike' -45 proposed a more refined method of minimum AIC
(Akaike's Information Criteria) based on information entropy theory. This is a very gen-
eral concept available for general statistics problems, as an example of curve fitting, that
is shown in Appendix A-2.4 AIC is defined asI

AIC(q) = (-2) loge[Max. Likelihood] + 2q (5.253)

where q is the number of parameters. Including 66, n + 1 parameters have to be
estimated, so

q = n + 1. (5.254)

The log, [maximized likelihood] is L in Eq. 5.233 or, omitting the constant,
L= N-n_ lg2 1

2 .

Here Q is defined as the sum of squares and from Eq. 5.246

^2 1ai =- Q.
N

Thus L = -- logi- a. (5.255)

2 2

Ignoring the second term, which is constant, and inserting it in Eq. 5.253

I
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AIC(q) = (- 2) ( 2 log ) + 2q

= (N-n) logci-+ 2(n + 1). (5.256)

AIC (q) mi.

I 4q

Fig. 5.46. AIC(q) vs. q.

The AIC (q) is plotted against n as in Fig. 5.46, which shows where the AIC (n) has
a minimum value. This minimum value is called MAIC, the minimum AIC, and this
method for obtaining that MAIC is called the MAIC method. Akaike 4 1,4 2 made clear that,
based on information theory, AIC is a measure of close fimess of approximation = a
measure of minimum difference: (statistical model-true model).

So if we express the statistical distribution of the occurrence of the data for the
model as p(x) and the statistical distribution of the true data derived from the true struc-
ture of the data, as q(x), to minimize AIC is to minimize

=I f(x)logp(X)q(x)'

the so-called Kulback'S47 information criterion. Also the so-called information entropy
S(q,p) is defined as S(q,p) - -I. So to minimize AIC is to maximize the entropy
S(q,p). Accordingly, the minimum AIC criteria are also called the maximum entropy

I criteria.
FPE was introduced to find the order of the AR model. AIC is, however, a very

general criterion and can be used for ARMA or MA(m) models too. For the ARMA
(n,m) model, we can use this criterion setting

AIC(n, m) = (N - m - n) log i2 + 2(n + m + 1). (5.257)

I Plotting AIC(n,m) over an appropriate grid of n, m we can adcpt (n,m) that minimize
AIC(n,m).

I
I
I
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Akaike also made it clear that, for large N, FPE, and AIC are equivalent, because
I + q/N o

log FPE(q) = log 1 -q/N qI

= log(l + q/N)- log(1 -q/N) + log I
= log (j-f+ 2q/N (for large N). (5.258)

Therefore AIC(q) = N log[FPE(q)].

When N, the number of observations, is large enough, the FPE criterion is the same as the I
AIC(q) criterion.

BIC(q). Akaike48.49 also proposed the BIC(q) criterion, based on the Baysian con-
cept, as a new criterion for determining the order. That is, Iý 2

BIC(q) = Nlog di - (N - q) log(1 - q/N) + q log N

+~~ ~ q.ofý (5.259)

This equation can be modified as follows if we approximate

I(- N- q) log(1 - q/N)} = -(N- q)(- q/N)} = q - q2/N q

for N >> q. Then

BIC(q) = AIC(q) + q(logN- 1) +q gq -•- q log II
= [N log c + 2q] + q(log N) - q + q log q-I 1). (5.260)

This relation shows that the difference between BIC(q) and AIC(q) is approximately
one q of AIC(q) and is replaced with q log N. This replacement has the effect of increas-
ing the weight attached to the penalty term which takes account of the number of I
parameters in the model. Shibata5° tells us that AIC(q) slightly overestimates and BIC(q)
slightly underestimates the real q value.

5.5.5 Examples of Order Determination through MAIC

In Sections 5.2.1 to 5.2.5, examples of the synthesized processes AR(O), AR(1),
AR(2), ARMA(2. 1), MA(2), MA(1), and ARMA(2.2) generated by mathematical models I
were shown. When these processes were given as observed data, the orders N and M of
each process were estimated by the MAIC method and then parameters a I ... a.;

b, •.. bm were estimated by the method described at each subsection. The results are
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I summarized in Tables 5.1 and 5.2. From these results, we can find the criteria of MAIC
that give us the correct values of the order except in a few cases. Estimation of parame-

ters a I . a,; b1 I • • b,, and (r7 is rather reasonable in these examples. Tables 5.1 and
5.2 list the AR(n) model fitted to the original ARMA or MA models. It is interesting that
the values of N obtained by the MAIC method are somewhat larger than n or m of the
original processes. These models are the AR models which approximate most closely the
original ARMA or MA models. We can say these examples gives us good proof that the
model fitting method, supported by order determination through AIC criteria, is a very
reasonable and powerful method for analyzing the linear stochastic processes.
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CHAPTER 6

MODEL FITTING TO THE RESPONSE OF THE LINEAR DYNAMIC
SYSTEM TO IRREGULAR INPUT

1 6.1 INTRODUCTION

In Chapter 5, the characteristics, stability, and invertibility of a single linear stochas-
tic process X¢ were discussed and it was concluded that AR, MA, or ARMA models of
appropriate order can usually be fitted to most of the linear stationary time series to
represent their statistical properties.

The characteristics of the model fitting techniques is, the author believes, that all of
these AR, MA, and ARMA models relate the process Xt to the pure random process

Et, although the relations that connect E, to X, are different for the different models.

For

AR: Xt+aiXj-i +a 2Xt- 2 + + • M E- ;

MA: Xt=E, + b1E1t-+b 2E€- 2  . . • +bmcEt--m; and (6.1)

ARMA: Xt + aiXt-1 + a2X--2  + aj 1 - = E,+ b1 E- 1

+ b2E1-2 + • + bmtm

In all of these models, Et was supposed to be the input to an imaginary system, and
Xt was treated as the output of the same system. All the characteristics of X, are expressed
in relation to those of the pure random (white) process.

6.2 RESPONSE SYSTEM WITH FEEDBACK

6.2.1 One Input/ One Output System

Here we consider the output Y of a real linear system with input X, usually ex-5 lpressed as

Y,= guX_ + E;. (6.2)

Here gu is the so-called impulse response function of Yt to Xt or the weighting function of
this linear system to X•. Now suppose we have N observations of the input/output pair

IXt, Y], t= 1 to N.

If e, is a pure random (white) noise, then we can estimate the coefficient g. to3, minimize

1 2013I



I

I gIZ{ z }xi.2 I
However, c,' is not necessarily white, and moreover it may sometimes have some

feedback effect on the input.

As already discussed in Section 2.6.3, even when noise exists in the output Y, of
input X4, if there is no feedback effect as in Fig. 6.1, we can get rid of the effect of noise
in computing the real spectrum of the output by finding the real response function of this
system from the cross spectrum of the output to the input. I

LINEAR SYSTEM Yt

INPUT OUTPUT OBSERVED 3
Fig. 6.1. Linear system without feedback.

However, if somehow this output is fed back to the input, as in Fig. 6.2, the input Xt
is no longer uncorrelated with N1, and Nt is included in X4 as a part of the input. Accord- I
ingly, taking the cross correlation does not help in getting the real response characteristic
of this system.

xt Yt
XT LINEAR SYSTEM Y" I

INPUT OBSERVED

Fi_ 6.2. Linear system with feedback.

By a parametric method different from the nonparametric method referred to above, 3
we can obtain the real relation by fitting an appropriate model to this system, getting rid
of the effect of noise by following Akaike.51

Under these circumstances, we first transform the noise el into pure white noise. I
Generally et' can be expressed by an AR model of arbitrary order I,

202 i
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E; + ClEt-li + C2Et-2 ... + CIELJ Ell (6.4)

et being a pure random process.I From Eq. 6.2

etý4 YI-I- g xt--.-(6.5)

Inserting these values into Eq. 6.4 gives, where 1 cc

I Yt - COg. Xi.... + C,{YI 1 -~g x19. 4- + C2{Y 1 -2 - 9. Xt- 2.i

.+ C I I4 .. . + . .. =Ell (6.6)

I or

y1 +C1 YI1 + c2yt- 2 +.. + ClYt- 1+.

19 Xt-1 + C1 9U X-1 -u.1 + C2 9u X1..2... +..

or

Ii C1Y-4I I C 1 1. + Et
1--0 u=J 10

= gu'-i C1 Xl1 U' + I . (6.8)
U=O 10
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where (u' = I + u) and u' > 1. Accordingly, if we set

0=0

Eq. 6.8 will be 

3
ZC c tI =7 h', X,_1 , + cf. (6.9)
=0 u'--0

Since E, is a pure random process, C, and hu, can be estimated by the least squares
method.

From Eq. 6.9

Et*= C*Yt-I- hu'X,.-', (6.10)
1=0 u'=O

(* = conjugate) 5
and

Ct+s = CI Yt+s,-4- I hu' Xt+s-u'. (6.11)

1=0 u'=O

Taking the products of both sides of Eqs. 6.10 and 6.11, and then taking the statistical ex-
pectation of each term

RIE(S)= IZ C; I , Ry(s)- - c; I h, R(s - u' + 1)
1=0 l=0 l=0 U'=O

StC, hu*, Ry_(s- I+ u')
1=0 u'=O

+ I1 h hu, R=(s). (6.12)
u'=O u'=O

Then, by the Fourier transform, 3
I2

I
2O4
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R,," (s) e-osda 3'kVy e-s ie cd-

27r f 1=0 I 2-7rf Rx(s) do

-Zcj e~iko I hu, e- .f R,(s - u+ P) do)

u1=0 u'=l "

[Ie- C ) e-ik I h*,e, e Ciu'w f Ry e-s-'+u') d)w
1=0 U( 

6 .

-+ h,' e+iu'w I hu, e; " R,'(,) e"4s. (6.13)
u '=O W=27

If we set

Z C1 e-4k = c,(to)) , cj e+"w = cj*to),
St=0 (6.14)

v hu, Cu"" = Hu,,,wt), h:, e+u''D = .,(to),

Eq. 6.13 becomes

1 a - C,(w))C*(w)sy,(w))- C7*(o)Hu'(ow)s.ý(o))
27rEEI

- C1(t)n*'(w)s-)"(t)

+ Hu, (to) uH* (to). sy,(to)). (6.15)

From this relation, we can get s.(w), syy(w), and sy (sý,), and Eq. 6.15 can be written

L = [Ct(wo),Hu'(W)] (6.16)

Equation 6.16 shows the relation of the power of the white noise to the spectra of input
and output and also of the cross spectra of input to output and the frequency response
functions.
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622 General Two-Dimensional, P-Dimensional Case

More generally, as the expansion of Eq. 6.8, we can think of a system, diagrammed

in Fig. 6.3, in which the output Xl,, is fed back to the input X,, as well as the input X2,,

being fed to the output Xl, I

x1., = I C 1.1 1 X 1 ., -I + C1C2 X 21t_• + Ef.,I=1ulI

(6.17)

X2"l = I C 2.1 ,l X1 l-I + : C 2.2"u X2,"-U + f2"u

I1=1 U=1

,j llx I
UU

I X 1
U2

Fig. 6.3. Two-dimensional feedback system.

This equation can be written in vector form as U
x,.1 't ,,., C12.,1 r,<,.-,I 1 f,.2 C12.21 rX,.,-2l
x2,.t LC21., C22.,1 LX2.,t-, C2. L C 22.2 LX2.,t-2,

] [ 'c,, I + c ., I

+ .. + F c 1,, cX2 . L[x1 k + fL-, " (6.18)
[C21,k C22,k JX2,t- JE2jJ

Cutting off the terms at appropriate k by some criterion gives
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Xt=a X,-,+ a 2 X,-2+ .. + ak Xk+ ft

k

= • auX,.+ c-, (6.19)

lwhere X, = I am = [ m Cl.2.m [Ij]I" C. I. 2I

More generally, in the P-dimensional process the dimensions Xi,,, X,, X.,.

are connected by feedback systems to each other. This process can be reduced to the P-
dimensional AR(k) model, with k as an appropriate order,

XI= a 1 X•_+ a 2 X,- 2 + .. . + ak X-k+ C,, (6.20)

.. "C11'.m • • • Cip.m"

X2 C21. C~p,m E2

where X,= am=

I .G.pi .G , . Cpp,r.np

Eq. 6.20 can then be written
kX, =I• a~m X,.., + c.t, (6.20')

M=1

or

{ 1- am (B") Xt= Et, (6.20")
M=1

or a(B) Xt=.,

here

a(Z)[ 1-{ aZ+a 2 Z2+ . . . + akZ ]. (6.21)
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Then the spectrum is

s2 (w) (6.22)

= 1 2'(6.22")

2 n a l e - " - a 2 e -2i - " " "- a k e - - 2 ' I

wheret u

E[el C,] 
t # 

(6.23)t=O .
I

The order k can be obtained from Akaike's minimum AIC criterion in this case too;
i.e., we can find k that minimizes 3

AIC (p, k) = NlogIE (k)I + 2p2k, (6.24)
where I

k
=(k) = a0 amR.(m), (6.25)

m=O

as it was for the scalar case.

Through these procedures, after fixing the order k, we get the coefficient

a 1 • . al, as for the scalar case. Then we can get the spectrum matrix from Eq. 6.22.

sxx, sxx,., sxx Isx• sx,.. sx=x,

(6.26)

SXPrI Sxpxp

The cross spectrum, for example Sx1, 2(w), is obtained in complex form I

Sx,x2(O)) = Cox,. 2(oo) + iQXlX2(w ) (6.27)

as an element of the spectrum matrix, Eq. 6.26.

I
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Then the frequency response function of x, to x2 is

Gx x(o / - {C~x'x 2(W)} + {eux'x,-(t)12(.8I Gýx(w)! = S . (6.218)

The phase relation is

'3• 2 (w) = Arg[Gx 1 ,(w )] = tan-1  Quxi:2(W ) (6.29)

.3 and the coherency function is

Y• xx 2(0o) = (6.30)
I

6.3 AUTOREGRESSIVE CONTINUOUS PROCESS

So far only discrete processes have been dealt with in which difference equations
have been used to formulate the processes. When we study the response of some dynamic
systems, however, the processes are in many cases substantially continuous. Usually,

I however, for computational analysis these processes are sampled at a certain time inter-
val At, and then the readings are digitized and are treated as discrete processes. The
analysis technique for a discrete process has been shown in detail in the preceding
sections.

Sometimes, however, it is helpful in understanding the response dynamics of a
system to treat the process directly as the continuous process.

Although difference equations have been used to formulate discrete processes, dif-
ferential equations are used to formulate continuous processes. We are more accustomed
to dealing with differential equations to express the physical characteristics of the re-
sponse of the dynamic systems than with difference equations.

In this section, the differential equations that formulate the continuous process will
be introduced. Then, following the derivation of Pandit and Wu,36 the relation of these
differential equations to the difference equations which formulate the digitized processes

will be suim.marized, since in practical applications, we might want to determine the char-
acteristics of the differential equations from the digitized data of responses and inputs.

6.3.1 The First Order Continuous Autoregressive Process A(1)

For the first order continuous autoregressive process, referred to as A(l), the first
order differential equation

d X(t) + a0.X(t) = Z(t) (6.31)
dt

can be formulated. Here Z(t) is the forcing function or the white noise, expressed as
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E[Z(t)} = 0

E[Z(t)Z(t- u)] = 6(u)06 (6.32) V
= E[z~t)]' = 6(0)a,3

6(0) is Dirac's delta function, r w

S J whenu=-0
6(u) 0 when u •0-, j

and n6(u)du=1. (6.33)

Accordingly, E[Z(t)]2 = o, which means that the white noise Z(t) is physically 3
unrealizable. The output XIt) is a stochastic process with zero mean. Using the differen-
tial operator D = d/dt, D = (d/dr)n, 5

X(t) = (D + ao)-rZ(t). (6.34)

When we express Green's function as G(v), I
X(t) = f G(v) .Z(t-v)dv = f G(t-v)Z(v)dv. (6.35)

0 - c

This equation is the orthogonal decomposition of X(t), since the Z(t)'s are uncorre- 5
lated, or independent at different times. From Eq. 6.34 and Eq. 6.35, it is also clear that,
when the forcing function is Dirac's delta function, X(t) is the Green's function,

(D + ao)G(t) = 6(t) 1

G(t) f G(v)6(t -v)dv. (.6

Here, since the solution of the homogeneous equation

(D + ao)-'X(t) = 0 
(6.37) 

1
X(t) = C ett, (6.38)
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where X is the root of the characteristic equation

A+ao= O, or =- a, (6.39)

X(t) = C eCa. 16.40)

This coefficient C is determined from the initial conditions given by the charactrns-
tics of Dirac's delta function as G(t) = 0, t < 0, G(O) = 1; therefore C = 1. Green's
function is obtained as

G(t)={eoI t >_ 0 (.1

10 t < 0 (.1

=u(t) e-"'a~ (6.41-)

here u(t) is the unit step function.

The autocorrelation function is R(s) = E[X(t) X(t- s)].

Using X(t) = f G(v') Z(t-v') dv'

0

aoand X(r -s) fJG(v) Art- s- v) dv

0

gives

R(s) = f f G(v')G(v)E[Z(t -v')Z(t - s -v)]dvdv'

0 0

= f fJaib(s +v - v')G(1/)G(v')dvdv'

0 0

=Z fG(v)G(v + s)dv 2 f-<xo v e--v+s)dV O e
2ao

0 0

R(- s) =R(s), (6.42)

thus
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R(s) = 2aZ(e (6.43)

Now suppose we have the sampled discrete data from a continuous process with
sampling interval At, and the data show an autoregressive process as shown by Eq. 5.7' 3

Xt-aXt--1 = E4. I.

The covariance function is, from Eq. 5.49, R(r) - a- R(r)= (o'/l a2)ar.

S1-a- 
)a-

Relation of A(1) to AR(I) by Covariance Equivalence. When s = rAt, the autoco-

variance function for a continuous process must be equivalent to that of the discrete U
process at t = rAt. Settings = rAt in Eq. 6.42 gives

R(rt)= Z e-aorA=' (ea°Atl)r. (6.44) I2ao 2ao

For discrete computation this is equivalent to R(r) = -•7. a. I
Therefore 5

-aA' = a (6.45)

2ao 1 a2  
(6.46)

or

-aoAt=lna or ao=- 1 (6.45')

and
d 2aoa02 (6.46') 1a:z- 1 -a2"

From these relations, we can convert the continuous process A(1) into a sampled process 5
AR(1), or vice versa, by inverting the coefficients from Eqs. 6.45' and 6.46'. From Eq.
6.43, the variance is

R(0) - __ *(6.47)
2ao

The spectrum is given by the Fourier transform of R(s) as I
I
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s(w)) = •9te I .Le-ao sl e--ws ds
2ao

~ rag+w ' (6.48)

9te {I showing to take the real part of a function {-I.

If we express

(D + ao) = a(D),

then
So2s~w=U 1
.O() = •Z){ (6.49)

which is again a form similar to Eq. 5.50 for the discrete process.

632 Correspondence of A(2) to ARMA(2.1)
Generally for a damped mass spring linear vibrating system, the second order differ-

ential equation as

MXk(t) + Bi(t) + KX(t) = ftt) (6.50)

stands as its fundamental formulation, where fAt) represents the forcing function.

Here
M = mass

B = damping coefficient (linear to the velocity)
K = restoring coefficient (linear to the displacement).
Transforming Eq. 6.50 by conventional expressions as

B
B 1 _ B
M or 2 wM (6.51)

K = 0)2 0)n K

M n

gives

-dX(t) + 2)n d-X(t) + 0)X(t) = ftt). (6.52)
dt d 1 M
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Us~ig the differential operator D = d/dt gives

(D2 + 2cw,,D + w02)X(r) (6.53)

or 1

(D2 + aiD + ao)X(t) = -- ft), (6.53')

where a1 = 2xwn, a0o = W2.

Eq. 6.53' is analogous to the AR model of the discrete process AR(2) as given by
Eq. 5.59 or Eq. 5.62,

X, + aXt.l + a 2X,_2 = E or (1 + ajB + a2B2 )Xt = . i

If we assume (1/M)flt) is a continuous pure random process Z(t), then we can say

that X(t) is an autoregressive process of continuous time of order 2 and express this I
process as A(2) as did Pandit and Wu.36

Then A(2) can be expressed as
(D2 + 2,ccoD + w2)X(t) = Z(t) (6.54)

{Uo) when (6.54

where E[Z(t)Z(t')] = oj. =6(t-t O2 when t= t'3
0 when t ;d t'

which corresponds to Eq. 5.62 for AR (2), and

X(t) = (D2 + 2cco.D + wo2)-lZ(t) = (D2 + aID + ao)-zt). (6.55) 5
Then using the Green's function G(t),

X(t) = (D2 + 2ico)D + w02)'z(t)

f G(v)Z(t-v)dv, (6.56)

(D2 + a 1D + ao)G(t) = 6(t) (6.57)

I
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G(t) f J G(v)6(t- v)dv. (6.58)

0

Then thinking the characters of derivatives in Eq. 6.57, at t = 0, G"(r) that is

D2G(t) contains the same discontinuity as does 6(t). Therefore, G'(t) must contain the
same discontinuity as does the unit step function, and similarly G(t), which is the integral

of G'(t), behaves like the integral of the unit step function, which is a ramp function.

Therefore, G(t) is continuous at t = 0, and the initial conditions are

G'(t) = G(t) = O, t < 0

G'(0) = 1, G(0) = 0. (6.59)

From these initial conditions (Eq. 6.59), the coefficients CI, C2 of the solution of the
homogeneous equation

(D2 + a ID + ao)G(t) = 0, (6.60)

that is, of
G(t) =Clelt + C 2 eA2, (6.61)

are determined as
A 1 -1CCA ' = A- 2 (6.62)

Therefore

e' It for t>0

G(t) = A10 (6.63)

0 otherwise.

HereA 1,A2 are the eigenvalues or the roots of the characteristic equation equated to
zero, as

f 2(z) = Z2 + ajZ + ao 0 0, (6.64)

or

Z2 + 2KCOc Z+ 0)2 (Z-AO)(Z-AD2 ) = 0. (6.64')

Then
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A1A -,± ýaý-4,ao)3

or = ) ( VK2 71.. (6.65)

This Green's function is the so-called unit impulse response function that shows the
response of this physical system to the unit impulse. I

G(t) = e'-t e21 (6.66) S
This impulse response function shows different forms as follows, depending on

<K =1.

a. When K a I (af -> 4ao), A )d2 are real. Therefore G(r) is a linear combination

of two exponentials, as is shown in Fig. 6.4.

Al -)2• e
-,e2t

11 - A2

G(t) G(t) 1 2  - el2t)

o i
Fig. 6.4. G(t) for x > 1.

Then 3

2I
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G(t) =w- K2-1__ u I e IA
2w. JK 2 I

-shah W, ý - I t .(6.67)

b. When K < 1 (a2 < 4ao), A 1A2 are complex. G(t) is a damped sine wave because

G(t) = 2e"o" - (6.68)

sin (,l- t) (6.68')
iwn Fl K2

IThlis equation is in the form of the impulse response function when K < 1, as in
Fig. 6.5.

c. When K 0, G(t) shows an undamped sine curve as is also shown in Fig. 6.5.

G(t)

G(t) .=

Fig. 6.5. G(t)for ic<1, xo.
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Using G(t) in Eq. 6.56 gives

X@) -f Z(t-v)dv3

0 eAI(1-V) eA(- V

= - 41 ---A2 Z(v)dv. (6.69)

Equation 6.69 is the orthogonal decomposition of X(t) and also shows the general
solution of the nonhomogeneous Eq. 6.54.

The autocovariance function is then, by Eq. 6.56,

R(s) = E[X(t) X(t- s)] S
= E[fJG(v')Z(t -v')dv' fI~)~ -s-vd

I f•G~v')G(v)Ez(t-v')Z(t- s-v)]dvdv'

00

o2 f f [Jcv')C,(V~(v+ s -v')SY']dv

= f G(v)G(v + s)dv. (6.70) t

0

Inserting in Eq. 6.70 the expression G(v) = A A and manipulating gives

R(s) e'.2 $) = e2 2,_ U"2( A 2S. (6.71)R~ ~(.) •1•,2 _,12]) -2A (,1'2 -. 1'22) 212(A2 -•2

Then the variance is 5

218 1
I



p ( = =_____ _ c (6.72)
2AO "2(/2" I + A2) 4Kcw03

The autocovariance coefficient a(s) is

L *OWs) = (6.72')

If this is a real process, then R(- s) = R(s) and

R(s) =2 (A2e'l"t -- le'21s'). (6.71')

Therefore, from the Fourier transform, the spectrum is, after manipulation,

1C

"S(W) = R(s)e-"sds

C23

i f ( 12li jA1j w

_ 1

= Z (w2 - w 1) + 4 2wow 2  
(6.73)

If we use Eq1. 6.54,
(D2 + DaI + ao)X(t) = Z(t)

a(D)X(t) = Z(t).

Here a(Z) = Z2 + aID + ao.

Then from Eq. 6.73

2SW z(=)±2 " (6.73')

This form is similar to Eq. 5.114, which is the expression for the discrete process
AR(2).
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Relation of A(2) to ARMA(2.1) by Covariance Equivalence. As was discussed in
Section 5.3.5, ARMA(2.1) is more general and more flexible than AR(2). The Green's

function for AR(2) is composed of two exponentials as G, = g + gU24 , that is one step

extension or complication of AR(1) process where the Green's function is Gj = Mj that is

one exponential. By the same token, we can say that ARMA(2.1) corresponds more I
closely or more generally and uniquely with A(2) than AR(2) does with A(2).

Now let us express the ARMA(2.1) that corresponds with A(2) as Eq. 5.120

X, + aX,- + a 2X,- 2 = el+ blc-l ,
or as Eq. 5.123, 3

(1 + ajB + a2B 2)Xt = (1 + bB)Et.

The autocovariance function for this ARMA(2.1) is from Eq. 5.166, 1
R(r) = B~yr + B2zu, I

where/,I,/z2 are the roots of the characteristic equation equated to zero for ARMA(2.1).Here I1
f(Z) =Z 2 +alZ+a

2 = 0.

From Eqs. 5.67 and 5.75 3
Yll +,U 2 = -a,

/• LU2 = a2, j
/U 142 = "2 (-a 1 a14a2) '

and from Eqs. 5.168 and 5.169 3
B1o,,(ul + bx) At1 + bi #•2 + bij

II

B2  aE~2U2+ b1) [#2+ b 1 #1 +bu]

(U1 -#2) 2  1 -/Si T -1-91412J

On the other hand, for A(2), when s = rAt, from Eq. 6.71, !

R(rAt) - • (r2 )•2 -, 1  2rAt).

I
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Therefore, if we put this in the form
= dlUr + d2U,, (6.74)

then

di= 2a1(Az-2 )

(6.75)

d 2 = 2 2 ( A 2 _-

Here A 1,).2 are the characteristic roots or eigenvalues of Eq. 6.64. Then

Al +)2 = -a
(6.76)

A112 =ao.

Then, as we did in Section 6.3.1, from the rule of covariance equivalence

eAl~x =#1 therefore lap-, =A 1  (6.77)
A

e2A1 = 2  therefore "T2 = A2 , (6.78)

and also

e + e12A' =jl +A2 = -a, (6.79)

ea'At = e(Al+A2)& = 14u112 = a2 therefore In a2 = (XA1 + A2)At = -alAt (6.80)

a, = 1a (6.81)

At

Equating the values of dj,d 2 for A(2) as in Eq. 6.75 and B 1,B2 for ARMA(2.1),
expressed by Eqs. 5.168 and 5.169, gives
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_A2) )u2) 1 Lt 1-U L2
_____ au-- 1 l , u1sb 1  M2-bl 52,1

(6.82)

_ _ ao(,u2 +b 2 ) U2 1 +bi #1.82)I

2A2 2(A ) '(U u-,U2) 1- -#2' 1-442

Taking the ratio on both sides of the two equations in Eq. 6.82 gives
(,u~~l +• / +b, 92. + b,

A2 --. I/t2 (6.83) £
-1 

IA2 #

This is a quadratic equation in b, and has the form 3
b2 + 2Pbl +1 =0. (6.84)

Thus 2P=- bl+I (6.85)(bi)
After manipulation, we get

2P= (1 +/,21)(1 -,u) -A 2(1 +,2)(1 1 (6.86)

and also

b = -P - . (6.87) 5
The homogeneous equations of Eqs. 6.53 or 6.54 is I

(D)2 + aiD + ao)X(t) =0

(O2 + 2w. +2)X(t) - 0, £
and its eigenvalues A 1, A2 are, according to Eq. 6.65, 1
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I 2~1 .2j(al Jai-4ao)=W~( ± .K 2~)

I

We can transform Eq. 6.86 into the equation expressed by aI,a2, and bI of the corre-

sponding ARMA(2.1) model by the relation of the so-called covariance equivalence.

Ia. Whena'j<4aO (K2<1):

Further, for simplicity of expression, we set

)L = -1U+ iv (6.88)
A2 = - U - iv.

I Then

V 2

(6.89)

I u = -al
2

a , = 2u( 

.

ao = u2 +'. (6.90)

From the covariance equivalence relations between AR(2) and ARMA(2. 1) we have
Eqs. 6.77, 6.78, 6.79, and 6.80. Further use of Eq. 6.88 gives

- a, =- 1 +#12 =--'iv)AI + e("-"iv)• = e-"& 2 cos(vAt)

1 -L -/ e"6e *2i sin (vAt)

I - a 2 = 1 - A IA2 = e -" & -2 sir nh (u At ) ( . 1

1 +a 2 = 1 +/uL2 =e"& • 2 cosh (uAt) (6.91)

I2 2 e2-2uA t =i sin (2vAt)

_ 1-4- 1,•U = 2 -2e -sinh (2uAt).

Inserting these expressions into Eq. 6.86 gives
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v sinh (2uAt)-u sin (2vAr) (6.92)

2u sin (vAt) cosh (uAt)- 2v sinh (uAt) cos (vAt)

v = u [2P sin (vAt) cosh (uAt) + sin (2vAt)] (6.93)

2P sinh (uAt) cos (vAt) + sinh (2uAt)

From Eqs. 6.90 and 6.81

- In (a 2 ) - a 6

u = 2A -, e (6.94)I

Therefore, from Eqs. 6.91 and 6.94 1
Cos (vAt) =a,

sin (vAt)= (a-4a 2 )
t6.95)

cosh (uAt) 1 + a2

sinh (uAt) = --a2"

With Eqs. 6.95 and 6.85, Eq. 6.93 can be transformed into an equation with a,, a2, and b 1,

-n (a2) "[1
S -- -- 1-- 2 a +• -- •-"b) (I +a a2)) (6.96)

V 2At ( i-4a) 2(l - a2) -al(1 - a2) bl + -

If we look at the first equation of Eq. 6.95, v is derived as 3
v = 1• Cos-, (-a, (E.97)

That value is not unique, since it does not include the MA parameter b I. However,

Eq. 6.96 shows that v is uniquely determined from a,, a2, and bl, since it includes the
MA parameter b1 as well as aI and a2. This is another reason why generally we prefer
ARMA(2.1) over AR(2) as the discrete process corresponding to A(2) and u is expressed
by Eq. 6.91.
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After u, v are determined,a 1 ,ao, or R,,w. can be easily derived from u, v by

Eq. 6.90

b. Whena2_> 4a 0  (K2>1)"

We can set

A2 = -U--V. 
(6.98)

Then computing the necessary elements for P in Eq. 6.86 in a similar way, we get

,1 +42 = e,'• + e•2aJ = e-uA' • 2 cosh (vAt)

/ ,-#2 = e-u'a" 2 sinh (vAt)

1 -#2 = e-' - 2 sinh (uAt)

(6.99)

1 +,Lu2 = e-uA' 2 cosh (uAt)

(U1 +Ai2) (A1 -- A12 ) = 2 e-2A" sinh (2vAt)

(1- 2U22) = 2 e-2"'A sinh (2uAt).

Inserting these values in Eq. 6.86 for P gives, after manipulation,

P u sinh (2vAt)-v sin (2uAt)P = (6.100)
2u sinh (vAt) cosh (uAt) - 2v cosh (vAt) sihh (uAt)

Then

u [2P sinh (vAt) cosh (uAt)- sinh (2vAt)]
2P cosh (vAt) sinh (uAt) - sinh (2uAr)

As were foraI < 4ao, the sin, cos, sinh, cosh functions are expressed by a,, a 2 for

this case. Therefore, after v and u have been determined, aI,a 2 or K, w,, can be deter-

mined from u, v easily. Their derivations are omitted here because we are usually less

concerned with the case when K2 > 1.

For this case, the coefficients al,,ao or K, w,, of the differential equation are

derived from a,, a2, and b, uniquely. The differential equation which expresses the con-
tinuous autoregressive process can be obtained from the parameters a,, a2, and b1 of the
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difference equation that formulates the di c:rete autoregressive and moving average
process ARMA(2.1).

The above mentioned is for the simple case of ARMA(2.1) versus AR(2). For the
more complicated cases of ARMA(4.3), ARMA(6.5).. ., theoretically A(4),
A(6),..... should correspond, and the parameters of differential equations that formu-
late these A(4), A(6)... should be derived from the parameters of the difference
equations that formulate ARMA(4.3), ARMA(6.5)..., although their relations might

be much more complicated than for A(2) from ARMA(2.1). The differential equations
that formulate the continuous autoregressive process give us good clues to finding the
physical characteristics of their response processes.

The second order linear differential equation is the basic equation of a linear dynam-
ic system with one degree of freedom. Accordingly, the above discussion indicates that
the ARMA(2.1) process represents the dynamic behavior of a linear system with one
degree of freedom under the excitement of white noise. g

2
a
I
b
I
I
I
I
I
U
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CHAPTER 7

5 EXAMPLES OF MODEL FITTING TECHNIQUE APPLIED TO THE
ANALYSIS OF SEAKEEPING DATA

In this chapter, examples of application of the model fitting technique to seakeeping
data will be presented to demonstrate the applicability of this technique to the analysis of

1 ~7.1 EXAMPLES OF AR(n) MODEL MIlTING FOR THE PREDICTION
OF SEAKEEPING DATA

Figure 7.146 shows examples of fitting of AR(n) models to observed seakeepingI data. After the appropriate order mnume n was determined by the MAIC method, as
described in Section 5.5.4, the parameters a I ... a,, were calculated from 800 observed
data points for the respective processes. Here for rolling n = 7 and for swaying n = 19 were

found to be the optimum. Figure 7.1 shows the values predicted for each process by

- t X= -a 1X,...--a2 xI.. 2 -- - - aXt.-. (7.1)

S0.00 10.10 5110 51 4210 1.0 SIM .10, n-13 "041 ",50 06-10 715.1 10101650* M 47.0 ZZ 571',V 10 7.1 0 711 718 0 .1 210.1

61.1VV V V' V

-. 0 VDECTIN STAIT $0 - STEP AHEAD0 FOR SWAYING

0.72

0.02

Do00 10.30 21=% 3100507410 -3I 1155 110.10' IAW MA t 13 747 044"710 70.010011004D 71t.03021010

I-ý
F-0.1 712oprsnbtentepedce auso ekeigdt
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using these a1 . . . a. One-step-ahead predictions for rolling and swaying and a
10- steps-ahead prediction for swaying are shown here.

7.2 EXAMPLES OF MODEL FrITTNG TECHNIQUE APPLIED
TO THE SEAKEEPING DATA

Figure 7.246 shows examples of spectra of model seakeeping data obtained in a I
model basin for a model of a ship. On the left-hand side (a), the spectra calculated by the
nonparametric method, the so-called Blackman-Tukey method, are shown and on the
right-hand side (b), the same spectra calculated by the parametric method, i.e., the AR(n)
model fitting technique. The spectra for wave height, heaving, and relative wave height
are shown on a logarithmic scale, and the Nyquist frequency of 2.50 shows

At = (1/2.50 x 2) = 0.2 sec. The total number of observations is N= 225, which is
rather small, and the maximum lag number for the B-T method is 50, which is large com-
pared to N. We can find the spectrum from the AR model, the order of each process being
shown by the AR number in each figure. The spectra are very smooth and the peaks of
the spectra are sharply defined even from these short records (small number of observa-
tions).

Figure 7.346 shows the behavior of AIC values that were used to find the order n of
the AR models fitted to each set of these seakeeping data. From this figure, we found n to
be 11, 9, and 10 for wave height, heave, and relative wave height, respectively. These a
values give the minimum AIC.

Figure 7.4 shows the time series of an AR(2) model simulated by the difference
equation, I

X- 0.5X,,-- + 0.7Xr- 2 = Er h
when a1 - -0.5, a2 = 0.7 in Eq. 5.59 for a general AR(2) model. There, , is white noise
with Gaussian distribution N(0, 1), i.e., with 0 mean and a variance 1. The time series are 3
also shown in the same figure. The number of observations is N= 1,000 for both time
series Et and Xj. The theoretical spectrum of this AR(2) model is shown at the top of Fig.
7.5.52 An AR(n) model was fitted to the simulated process, and from AIC criteria, the I
optimum n was estimated as n=2. The coefficients aI, a2, and the variance ur2 of E, were
estimated by the method described in Section 5.2.3, and the spectrum s(az) was calculated
using these parameters, as shown at the bottom of Fig. 7.5. Independent of this order n =2
by minimum AIC criteria, spectra were also estimated for higher n; A(10) and AR(20)
models were fitted and their spectra were obtained as shown in the same Fig. 7.5.

I
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(B-T method). model fitting).

Fig. 7.2. Examples of spectra of model seakeeping data.

(From Yamanouchi, et al. 46)
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Fig. 7.3. Behavior of AIC for seakeeping data in getting the spectra (b) in Fig. 7.2.

(From Yamanouchi, et al.46)

I

SIMULATION DATA N = 1000 1
WHITE NOISE Et

Xt= 05Xt- 1 -0-7Xt- 2 + Et

100 200 300 400 500 600 700 800 900 1,000

TIMEt t

Fig. 7.4. Simulated AR(2) process X, = 0.5 X,_. - 0.7 X2 + e,

Et is a white noise N(0,1).

(From Yamanouchi, et al.52 )
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(a) AR method (optimum). (b) AR method (not optimum). (c) B-T method.

Fig. 7.5 Comparison of AR-model fitting method and B-T method and the effect of
changing orders of AR-model fitted to the simulated AR-2 process.

(From Yamanouchi, et al.9)
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For comparison, the spectra calculated by the nonparametric method (Blackman-
Tukey method) are also shown in this figure. The maximum lag numbers are 50 and 100,
which give a fairly high confident estimate since these numbers are 1/20 and 1/10 of the
total number of observations N= 1,000. It is interesting to note that the result for lag=50
looks much like the one for AR(20). The impressive point here is, of course, that the esti-
mate from the model fitting technique, which determines the order from the minimum 1
AIC criteria, gives a result that checks the theoretical process very well.

Figure 7.6 compares the estimates from AR model fitting and the B-T method for
the same simulated process (Fig. 7.4) for a wider range of order (AR 1-16) and maximum I
lag numbers of 20-500, for reference.

Figure 7.752 shows a few examples of the analysis of actual at-sea ship performance
data. Rolling, wave height measured by buoy, and the horizontal acceleration of the en-
gine bed (as of different frequency characteristics, because the engine bed is mostly
excited by the prime movers of the ship) were analyzed by three different methods: the
AR model fitting method, the F.F.T. method, and the Blackman-Tukey method. The sam-
pling time interval was At= 1 sec for roll and wave height, At=0.02 sec, much smaller for
acceleration. The spectrum of the horizontal acceleration of the engine bed estimated by
the AR model fitting method gives very reasonable results, compared with the ones ob-
tained by other methods, the former clearly showing the existence of multiple natural
frequencies. 5

Figure 7.8 shows other examples of the spectra of the horizontal acceleration of
the engine bed estimated by the AR model fitting method at orders n of 5, 10, 15, 20, 30,
and 55. The result at n=10, where the AIC shows minimum values, looks most reasonable
and clearly shows the existence of multiple natural frequencies in horizontal vibration.

7.3 EXAMPLES OF PARAMETRIC ANALYSIS OF RESPONSE
CHARACTERS OF MARINE VEHICLES AND STRUCTURES

Figure 7.952 shows an example of simple response, the case of yaw angle versus
rudder angle of a seagoing ship. The results for the spectra of input and output and the
frequency responses from two methods, the AR model fitting and nonparametric meth-
ods, are compared. When the spectrum and response characteristics do not show any
abrupt changes with frequency, as in the example, most of the results from the two meth-
ods look similar. However, when we look at the Nyquist diagram or the mode diagram of
the frequency response characteristics, the results from the AR model fitting are much
better and smoother and more reasonable, physically, than those from the nonparametric
method.

Figures 7.10 and 7.1146 show the results of seakeeping data for a model ship in
waves produced in the towing tank, also analyzed by two different methods. 3

From these figures we see that the AR-model fitting techniques give smoother
curves for the spectra and for the frequency responses. Also, in the important range of
frequencies, the coherency values are closer to 1, showing that the response characteris- 3
tics are more reliable when estimated by this method.

In both figures, the cross spectra are shown by their real and imaginary parts, i.e.,
by co- and quadrature-spectra. The shape of these spectra, which show very sharp peaks,

I
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I THEORETICAL SPECTRUM : N = 1000

20. X~05
1 7 2 "q1

1 2201 L=20

0.1 0.2 0-3 04 0.5

AR-i 0

2.0 01 02 0.3 0.4 .05 20 01 02 03 04 05

AR-2 L5

1 0 I 0:10 1111

2.0 AR-4

L -20

2.0 AR-8

L - 500

2.0- AR-16

0-

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

(a) AR method. (b) B-T method.

Fig. 7.6. Effect of changing orders in AR-model fitting to the simulated AR(2)
process (Fig. 7.4) [MAIC shows order is AR-2] and the comparison
with spectrum obtained by B-T method.

(From Yamanouchi, et al.s)
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Fig. 7.7. Comparison of the spectrum through AR-model fitting and
conventional methods.

I(From Yamanouchi, et al.52)
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Fig. 7.8. Effect of changing the orders in AR-model fitting (by MAIC; AR=1 0).
(From Oda, Yamanouchi, et al.5)

indicates that the AR method gives better results than the B-T method and more precisely
follows the rapid changes in the curves.

By the way, the time shift techniques that this author proposed in Section 3.2 might
have given even greater improvement in the results if it were properly applied. The rapid
change in phase response with frequency shows this fact and indicates that there is still
room for improvement by the proper shift of responses even in the case of using model
fitting techniques. Figure 7.1254 is an example of the same kind of comparison of two
analysis methods used on the pitch motion of a model of an offshore semisubmersible as
shown by Fig. 7.13 on irregular waves in the model tank.
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Fig. 7.13. Photograph of a semisubmersible model (scale 1/90).

(From Oda, Yamanouchi, et al.-s)

Figures 7.14-7.1753 show the results of frequency response analysis of the model
seakeeping data as heave, relative wave height, pitch, and surge in irregular waves deter- U
mined by the AR model fitting technique for the same offshore semisubmersible. These
data were analyzed as a one-input/one-output vector process, although, if we like, we
can analyze them as a one-input/multiple-output vector AR process. The orders of AR

models fitted to these systems are marked on each of the figures.

Figure 7.16 is concerned with the same response under the same conditions as Fig.
7.12. From these results, we can find the same characteristics of AR-model fitting tech- I
niques. All the spectra and the frequency responses are much smoother and follow well

the rapid changes with the frequency. These tendencies are more clearly indicated by Fig.7.18. 3
In Fig. 7.18 the response characteristics of heave, relative wave height, pitch, and

surge are shown expanded in the important range of response frequencies for 6-24 sec-
ond periods for a full-scale structure. The results obt-ined by the AR model fitting and
B-T methods are shown with results of experiments in regular waves in the tank. The
figures show rather surprisingly how well the results from the AR model fitting technique
follow the minor changes of the response in amplitude as well as in phase relations ob- 3
tamined in experiments with the regular harmonic waves of several frequencies.

I
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Fig. 7.14. Frequency response analysis for heave by AR-model tiffing
OU (N=250, At--0.2 sec, AR-8).

(From Oda, Y1nanouchi, et a.5)
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CHAPTER 8

I CONCLUSION FOR PART H

In Part II, we have discussed the model fitting technique or parametric analysis
method for a random process. Comparing this method with those discussed in Part I for
nonparametric analysis, we can conclude as follows:

1. The examples in Sections 5.2.1 to 5.2.5 show that the autoregressive (AR), mov-
ing average (MA), or autoregressive moving average (ARMA) model of rather
low order can represent pretty complicated looking processes with various

frequency characteristics.

2. For a given process, generally we can fit an autoregressive (AR), moving average
(MA), or autoregressive moving average mixture type (ARMA) model of certain
finite order. From the sample autocovariance functions at rather low lag num-
bers, we can estimate the finite number of parameters of the molel and the
variance of the residual errors, once the order of the model has been determined.

3. The characteristics of the discrete parameter model are closely related to those of
the correlations of that model. To find the finite number of parameters to express
the process, the correlation function until the finite order is sufficient, as men-
tioned in item (2). Sample correlations at low lag numbers are more reliable than
those at higher lag numbers, and there is no need to be concerned about the lag
windows as there is in the nonparametric analysis (the so-called Blackman-

Tukey method), where, ideally, we need the correlation function over

o- to + 0o of the lag numbers. This concern about lag windows and consistent
estimates, resulted in many efforts to find good windows. Not using the lag win-
dow is also one reason why we can get better results by the model fitting
technique then from rather short records.

4. The order of the AR(k), MA(Y), or ARMA(k, 1) models that are to be fitted to a
sample process, as the best from a statistical point of view, can be determined by
Akaike's information criteria (AIC) as the combination of the parameters (k, 1)
which minimizes AIC.

5. Evaluation of the parameters of the AR(k) model is easily performed by solvingI the Yule Walker equation, which is a linear relation of parameters. The solution
by Yule Walker's equation is a good approximation of the solution by the maxi-
mum likelihood and least squares method. On the contrary, for the MA and
ARMA models, estimation of parameters is more troublesome and difficult and
involves solving the nonlinear least squares equations.

6. As far as stability and invertibility are fulfilled, the AR and ARMA processes of
finite order can be inverted to the MA process of infinite order and, conversely,
the MA and ARMA processes of finite order can be inverted to an AR model of
infinite order. Usually, however, in this approximation, the order increases from
the original MA or ARMA order. The order of the AR model that best approxi-
mates the original MA or ARMA is obtained through the AIC criteria. In this
approximation, estimation of parameters becomes much easier than for the origi-
nal MA or ARMA process as mentioned in item (5). Accordingly, AR model
fitting is usually used practically for general processes.
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7. After an appropriate AR, MA, or ARMA model has been fitted, it is easy to cal-
culate its spectrum. The spectnum function can be estimated analytically from
only a few parameters that characterize the fitted model. The spectrum thus ob- I
tamed is smooth compared to the spectrum computed by the nonparametric
method, or by the Fourier transform of the estimated autocorrelation. A sharp-
peaked spectrum can be obtained by this method, free from the smoothing or
blurring effects of the spectrum window that are inevitably applied in the
nonparametric method.

8. From the characteristics of the model fitting technique, we can get a fairly reli- I
able and sharp spectrum even from rather short records of observation, whenreliable autocorrelation functions at large lag numbers are difficult to estimate.

9. The AR model is effective in finding the peak frequency and in estimating the
peak value of the spectrum. Usually the second order of an autoregressive model
is necessary to identify one peak of the spectrum. II

10. When the purpose of the analysis is to estimate the characteristics of responses,
the AR model that estimates the peak effectively is an appropriate approximation
of the ARMA model. The ARMA model, however, is more reasonable for ex-
pressing the response of a linear dynamic process to random excitations, as will
be mentioned later.

11. To express the flat valley of a spectrum, however, a large order becomes neces-
sary if an AR model is to be fitted. A flat valley is more easily expressed by an
MA model of low order. This tendency comes from the character of the trans-
form function of the spectrum.

12. The ARMA model that expresses peaks by an AR model and flat valleys by an
MA will be the most appropriate in general cases.

13. The model fitting technique relates all linear stationary processes to appropriate
AR, MA, or ARMA models. All of these models assume that the process is the
output of a pure random process or of white noise. The linear relations of this
process to white noise can be derived as the Green's function of these models.

14. When a process is the linear output of some input that is not necessarily white
but colored, we can get the response of this process to the real white noise if we
assume that the colored input is the output of the real white noise. In this way we I
can relate all the colored input to a random process.

15. Even when the linear response system has some feedback effects, we can fit a
vector autoregressive process, inverting the input into a pure random process by U
applying an autoregressive process technique to the input, as mentioned in item
(14). We can get the linear response characteristics of the system from the
elements of the spectrum matrix of the vector process. In observations of sea-I
keeping data, sometimes the feedback effect is concealed, so this method can be
applied effectively in the analysis of such data. With the conventional nonpara-
metric method, the kind of system that has feedback effects is hard to handle.

16. A second order autoregressive continuous process A(2), formulated by a second
order linear differential equation of the damped mass spring vibration type, can
be transformed into a discrete ARMA(2.1) process formulated by a difference I
equation and by the equivalent correlation theory, the coefficient of the
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differential equation can be expressed by the coefficient of difference equation
and visa versa. The second order autoregressive continuous process A(2) is then
the basic process, as the response of a linear vibration system to the white noise
with one degree of freedom. Conversely, when a dynamic process with one
degree of freedom is excited by white noise, the digitized response can be ex-
pressed by an ARMA(2.1) model. When the input is colored and not white, we
can invert this system to a pure random process (white noise as mentioned in item
14) although the order increases. Thus the ARMA model is the most general pro-
cess for ey-jressing the oscillatory response of a linear system.

17. An advantage of the parametric analysis is that, by fitting a certain discrete model
to the response process, theoretically we can estimate the characteristics of the
differential equation that governs the response of a continuous process by invert-
ing the difference equation that expresses the discrete model into the equivalent
differential equation that formulates the continuous process.

18. The confidence limit of each parameter of a fitted discrete model can be eva-
luated. The remaining statistical considerations are taken care of by adopting the
most adequate order of the model based on Akaike's information criteria. How-
ever, if we could express the overall reliability by some simple expression, say,
for example by a confidence band at some level of probability, it would be easier
to give us more confidence in the parametric method, directly comparing with the
result by the nonparametric method.

19. The AR model was adopted here first and was applied to the seakeeping data of
ships and offshore structures, both for models in the tank and for the actual ships
and structures at sea. From the results, we found this model fitting technique was
practical to apply and was a promising metnod of analysis, sometimes giving us
better results than the conventional nonparametric method. At least this model
fitting or parametric analysis technique supplements the nonparametric method.

20. The ARMA model is the most general and is directly connected with the continu-
ous AR model or its formulating differential equations that govern the behavior
of the system. It seems to be the most desirable for estimating the physical char-
acteristics of the process, although its handling in the estimation of parameters is
more complicated than for a pure AR model. Accumulation of experience with
this application is now very much needed, this author believes.
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APPENDIX Al

DATA FOR THE GENERATION OF THE PROCESSES

Data for the generation of a pure random process AR(1), AR(2), ARMA(2.1),
MA(2), MA(1), and ARMA(2.2), given in Chapter 5, Figs. 5.3, 5.10.5.20, 5.25, 5.28,
5.32, 5.35, 5.38, and 5.41, and Tables 5.1 and 5.2 are listed on the following pages.
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APPENDIX A2

POLYNOMIAL MODEL FITTING TO OBSERVED DATA"

Given pairs of data {(Q, Y-}, i = 1 ... N, we often wani to express Y, as a
polynomial of XY.

If we fit YM.i, a polynomial of xi of order M, as

YM.i = ao + ajxi + a2 , + • + amxi (A2.1)
i= 1,-. " N,

we can estimate the coefficients ao, a I ... a,, by the least squares method. Namely,
computing the mean square of the difference

1N

a2=- 1 YMi) 2, (A2.2)
N

and find the ao, a •I• a. that makec' minimum. Then from

M ao+(x)a+. .+(I
aao

aao

-a k-0, (1Exi ao + ( a, + - + (I x/im+1)aM= xi yi (A2.3)

Mr2Ms-g O ( l.X ao+( x +al.. +* ( Ni'MaM= jxM'yi .

The ao" .am are calculated as the solution of the simultaneous Eq. A2.3.

Here, the most serious problem is determining the order. We can make Y as close

as we wish to y, by making the order M very large. However, if M is too large, YMi

follows, even to the random error of the observations. Of course, if M is too small, YMi

sometimes neglects the variations in the data that really exist, as shown in Fig. A2.1.
Order 1 is too small, but order 5 seems too large.
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I
ORDER 1

ORDER 2

ORDER 5

622/ x
5 19

207

104 f3r'i

000
000 080 159 239 318 396 478 557

Fig. A2.1. Fitting of polynomials to the observed data.
(From Yamanouchi, et al.4 s)

All observed data include the statistical error. Accordingly, when xi are given, I
instead of Eq. A2. 1, y, should be represented by a regressive polynomial,

yj = ao + aaxi + a2Xi +. • • + aM 'i + ei. (A2.4) 1
Here ej is a probability variable that follows the normal distribution with 0 mean and 1

variance a.. Here, we can define that model fitting is the statistical selection of a model
to fit best to data in statistical meaning. When we use Eq. A2.4 as the model, we can use 3
the minimum AIC criteria or the MAIC method to determine the order M. When y' is

approximated by a polynomial of order M as in Eq. A2.1, the coefficient hj's has the

values determined by the least squares method, 1
N

Then let us investigate the behavior of this mean square of the residual errorI N
N (y , -y M .i 2 = a C ,2

or N times the logarithm of Eq. A2.5 3
No-log(y, )2  og" 2  (A2.6)

This value A2.6 is shown in Fig. A2.2 by the mark 0 and tells us that the larger the value 3
of M, the smaller this value A2.6 is, or the larger the. order M, the smaller the residual

error of..
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0

25 - 25

-30- - 20

S2(M +2)
0

S35- 
- 15

z

-40 10

SAIC
0 N x LOG 0"

' 2(M+2)-45 - j 1

05 10

NO. OF PARAMETER (M + 1)

Fig. A2.2. Behavior of AIC for Fig. A2.1.
(From Yamanouchi, et al.46)

However, this procedure of guiding M from Eq. A2.6 does not give us the best
values of the order, because Eq. A2.6 does not include the goodness of fit to the real
structure of the data or the decrease in reliability with the increase in the number of
parameters to be estimated. So, to show the penalty for this increase in the order, if we
add the term

2 X (no. of parameters) = 2(M + 2) (A2.7)

to Eq. A2.6, that gives us the AIC,

N

AIC(M) = Niog X (y_•Mi) 2 + 2(M + 2). (A2.8)
i=1

"ihe number of parameters M + 2 comes from (M+ 1) aj's for a,,a a, amplus 1

for a 2 that we must also estimate. The behavior of 2(M + 2) is shown in Fig. A2.2 by
the mark 0 as a straight curve that increases linearly by M. Then AIC, expressed as the
sum of N logo 2 and 2 (M + 2), behaves like the & in Fig. A2.2 and shows a minimum at
a certain M, here M + I = 3 for the data shown in Fig. A2.1. Thus the order of the
polynomial is determined as M = 2 by AIC criteria.
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From the discussions in Section 5.4.3, we know that Eq. A2.5, the estimation thatN

minimizes (1/N) (yy, -YMd, 2' is the estimate that maximizes the likelihood function L.

or the logarithmic likelihood function log L. Accordingly, Eq. A2.8 can be written as

AIC = - 2 log(max likelihood) + 2(no. of parameters). (A2.9) I
Eq. A2.9 supplements the characteristics of AIC, this author believes. As another

example of polynomial fitting, Fig. A2.3 shows the plot of the observed data for a
maneuverability test of a ship.

By the same procedure, from the behavior of AIC in Fig. A2.4. the order was
determined as M =5, and the fifth order polynomial was estimated as the best fit to these
data. I

S0.5 u "

0.4 3

0.2

0.1I, ,• HELM ANGLE (DEG)

40 39 20 10 m .,10 2O 30 403

PORT ST"ARBOARDI

ORED2ER 1I ORDER 5

ORDER 8

-.3

Fig. A2.3. Fitting of polynomials to the data of maneuvering test of ship.m

(From Yamnanouchi, et al.46)

I
I
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On Fig. A2.4, the behavior of AIC is shown for this fitting.

t -42 3t-15.0 1,-07 4

-1-00

-170.0

-180.0

S-1900

-200.0

-210.0

-220.0

-230.0
0 1 2 3 4 5 6 7 8 9 10

NO. OF PARAMETER (M + 1)

Fig. A2.4. Behavior of AIC for Fig. A2.3.
(From Yamanouchi, et al.")
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PART [M

TREATMENT OF NONLINEARITIES

CHAPTER 9

INTRODUCTION

9.1 INTRODUCTION FOR PART M
In the preceding sections, Part I and Part Il, the processes were assumed to be al-

most linear, and in so far as the process is linear, the periodogram analysis shown in Part I
and the model fitting method in Part II are effective methods of analysis. For example, a
Founer-Stieltjes expression for the process assumed to exist in Part I is originally a linear
expression, and the AR, MA, or ARMA models treated in Part II are based on the idea of
decomposing the processes into independent or orthogonal processes, i.e., assuming their
linearity. However, if the process is nonlinear, these methods can no longer be applied
directly. We need some special considerations for their treatment.

In most engineering fields, many phenomena can be approximated as linear. How-
ever, no phenomena are purely linear but include some elements of nonlinearity. Today in
nonlinear phenomena such as the effect of viscosity, the secondary potential forces that
include the interaction of two frequency components of excitations have come to be con-
sidered important in treating the behavior of ocean vehicles and structures, although
useful information has been derived even under the limitations of linear approximation.

Here in Part I, the nonlinearity of waves themselves that are the source of excita-
tion to systems of ocean vehicles and structures is first investigated. According to a few
works already published, their nonlinearity is usually not large.

The approximation methods that have been used to treat nonlinear response pro-
cesses, such as the linearization method and the perturbation method, are summarized. As
more advanced approximations, the Voltera or functional expansion of the nonlinear pro-
cess and the application of polyspectra are then introduced.

As an extension of these approximation method, a slightly different aspect of the
analysis of the probability characteristics of the process, the probability distribution func-
tion of the extremes, is summarized. As extensive work has been published recently on
the analysis of nonlinearity response including these probability characteristics by J. F.
Dalzell, 12,1 3,55-5 only the derivation of general characteristics of several functions and
the results of these applications are reviewed.

Next in Part III, the treatment of stochastic processes as Markov processes is intro-
duced, and then the application of the Fokker-Planck equation, also recently introduced
by J. B. Roberts59-' in the analysis of seakeeping data, is reviewed.

Finally, as a slightly different approach, or as the extension of the model fitting tech-
niques discussed in Part H, a few examples of this extension to the nonlinear process are
briefly reviewed.

267



9.2 NONLINEARITY OF OCEAN WAVES

Wave theory has developed remarkably in recent decades with the assumption of a
wave as a stochastic process. In most cases, however, the assumption is based on infini-
tesimal amplitudes and is valid only when the wave height is small compared with the
wave length, and wave length is small compared with the water depth. All the quadratic
terms of the derivatives were assumed to be small and were neglected, and the
fundamental equations of motion were linearized and the linearized potential function
was derived.

In this section, the results of only a few works on the investigation of the effect of
this neglect will be reviewed to show that the effects are indeed small.

9-2.1 Second Order Spectrum of Waves by L. J. Tick and Others 3
To take account of quadratic terms, L. J. Tick 62,63 expanded the potential function of

a wave O(x, z, t) around the mean position of the wave z = 0 by Taylor expansion,

0(x,z,t) = 0(x,z,t) + ao(xt z+ . . . , (9.1)

and carried it to the second term. Using this expression in the fundamental equations for
waves, through the perturbation method he expressed this velocity potential as the sum of
the linear part 1 (t) and the quadratic term 0 2(t) as

0(t) = 1 l(t) + 02(t). (9.2)

As a result, the wave height is supposed to be composed of two parts, linear and
quadratic, corresponding to these two potentials, as

+ (9.3) i

and expressed

-7(1)(t) f e-j td (co). (9.4)

Here

E[1412] = s(1)(to)dW, (9.5)
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f(2 )(t) -= f e-j(•+"')t Q(w,W')d4(w)d4(w'), (9.6)

and

Q(wo,wo') =-[sgn(wo), sgn(wv')] 2 (9.7)

I Then the spectrum of j7(t) was derived as

I
S() ()&)+1 f [o - ;Lco-) + R~•] sC1)(°_Zsl(otd

| -00

As an example, Tick took the simplified Neumann-Pierson type spectrum
as s(w)(w) = 1.8 x 1.04&-ko1 > wo and computed this s(2)(W) for 0•o = 2, 3, 6 rad/sec.

1 Figure 9.1 shows the results and (1/g 2)s<2)(Wo) is as small as several hundredths of

s(')(c) at the most.

L. Tick 63 considered also a shallow water depth and derived the type of

Qh(w,w)') for this case that corresponds to Q(w,co') in Eq. 9.6, as

I l'Ik k'Ik k' ww' (ww)

Qh(O), 0)') = 1 lkO kk k + wkwk (W+ +oW')1
2 j T' 2 2

+ I0w 2 2w 2 (9,9i (IkI k+Ik'l k) tanh [d 2(Iki k+ Ik/ k')] - (W + o') 2

Here d2 = (hig), k = k(o)), k' = k(wo') are the solutions of W,2 = k2 tanh d2k2. As an

example, he showed s(2)(W) of s(wo) = s(l)(&o) + s(2)(Mo), for the following type spectrum,

I
I
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0.6

0.5-3

0.4-

0.3 1
02.

0.1 1
0 1 2 3 4 5 6 7 8 91011121314151617181920 3

0.0003

0.0002 [ _-___I

0.0001

0 1 2 3 4 5 6 7 8 910111213141516S7171920
s2(0O) for s1(co) - 18 x 10'w, >•0 > 10o

FiRg. 9.1. The second order spectra.
(From Tick.2) i

$ (1)((0) = C &)-4 e"6•w, (o < 2

and showed s(2)(w) as in Fig. 9.2. In this case, even when the water depth h = 32.2 ft, the

effect of nonlinearity is small.
He pointed out the necessity for computing the bispectrum to show clearly the

quadratic effect of the waves as will be discussed in Section 9.2.2.
On the nonlinearity of the waves A. S. Longuet-Higgins64, 65 and D. M. Phillips6 3

discussed work along the same lines, and M. Hineno67 referred these works and showed
clearly the quadratic effect, as in Fig. 9.3, that was calculated for a modified Moskowitz-
Pierson type spectrum. In Fig. 9.4, the quadratic and linear parts of the spectrum 3
produced in the experimental water tank are shown.

Hineno67 also showed the quadratic kernel functions g2('r, T2) as Fig. 9.5, that is, the

Fourier transform of quadratic frequency responses G2(W 1, W2), equivalent to the

Q(w,w') by L. Tick, as

II
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0.70

nz0 2 3
,a c=23-

0.60-

' 0.50

S0.40
z
LU.
0 r
- 0.30

I-
W

0.10 h=46.4

It.( 2.5

0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

FREQUENCY, rad/sec

Fig. 9.2. The second order spectra s'2 (w) for varying depth h = 32.2, 46.4, and 72.5 ft.
(From Tick.63)

G2(w01,(02) = I + cO2) for the sum (o01 + o)2) frequency component2g

1 2 2
2g 1W0) -42 for the difference frequency component. (9.10)

Figures 9.3 and 9.4 indicate that the quadratic effect on the spectrum computations
is very small for ordinary cases. M. Hineno67 extended this result and calculated the prob-
ability distribution of the maximum and minimum of the waves. The results are intro-
duced in Section 12.7, and from the results we find that the effect of the nonlinearity is
not large.

92.2 Bispectrum of Waves

L. Tick 62 suggested the need for bispectrum analysis for ocean waves. Such an anal-
ysis was performed by K. Hasselman et al.68 as shown in Fig. 9.6. The exposition on the
bispectrum is given in Section 11.3. Here, one bispectrum for shallow waves is given as
an example, and it indicates that the nonlinearity is not large in this analysis either.
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QUADRATIC (DIFFERENCE) x 100
QUADRATIC (sum) x 100

% 0.2H
1 3 1.6

Tm16.1 sec

0.1

0 0.5 1.0 1.5

a), rad/secI

Fig. 9.3. Unear and quadratic component of wave spectrum of Pierson-Moskowitz.

I

loe.

00

0 1 2 3

Fig. U.4. Lnear and quadratic component of wave spectrum of
waves produced in a towing tank.

(From Hineno.6 7)

I2"72

a i I I I I I Ii I



Fig. 9.5. Quadratic kernel function 92(T], r2) of wave.
(From Hineno.67)

D 28 FEB 1962

A.

Fig. 9.6. Bispectrum of ocean wave.
[The number -74 denotes -7 x 10 o~cm3 sec2. contours are drawn

for -103, -104, -106, and -106.J (From Hasselman, et W.611)
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I
9.3 RESPONSE OF THE BEHAVIOR OF A MARINE VEHICLE ON WAVES

When the amplitude of oscillation in six degrees of freedom is small, the behavior
of a marine vehicle in waves can be expressed approximately by linear equations.

Here, for simplicity, if we assume that a floating body in a regular wave train

•(t) = Z(w)ej t is subjected to a force bý(t) that is linear with wave height ý(t), theI
equation of motion is well approximated69 by

I
ali~t) + a21(t) + a3x(t) = bý(t). (9.11)

The response x(t) will be in the form X(w)e'",

where

X(o))e•'= X(o)Ie{0t'C{0)4•-(0). (9.12) 3
6ý(w), a,(w) are the phase relations of the exciting force to the wave height, and the I
response to the exciting force, respectively.

Generally, for a body floating on the surface of water, the coefficients aI, a2, b of

the inertia term a 1#t), the damping term, and the compulsory term, respectively, are

generally functions of the frequency and so we find aI = AI (w),a 2 = A2(Ao), and 5
a3 = A3(W), b = B(wo).

The equation of motion, Eq. 9.11, will be 3
- w 2A 1(w)X(w)ei' +jwA 2(w)X(w)e*' t + A 3((o)X(wO)e*' = B(0))Z(0))eia'. (9.13) 1

Therefore, the frequency response function Hx,(W) of the behavior X(w)) to wave height i

Z(w) is B~w) I
H() = W 2A(w) +jA 2(w)+A 3 (w) (9.14)

From this, expressing H,ý(w) just as H(w),

2
i
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X(ow) = H(o))Z(w ). (9.15)

Taking the Fourier transform gives

x(t) = f h(r)(t - r)dr. (9.16)

Here

h(r) = f H(co)eJWrdw, (9.17)

-- cc

is the impulse response function.

When the waves are expressed by a Fourier integral,

(t) = -! JZ(wo)eAO'd6o, (9.18)

the linear response x(t) will be

X(t) = X(to)eý"doo. (9.19)

Strictly speaking, these integrals (Eqs. 9.18 and 9.19) should be Fourier-Stieltjes
integrals in the form of

. f e.)d •p) eJ~dX~O), (9.20)

where
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dZ(w) dZ(w') = s•(w)6(wo +c') (
(9.21) )

dX(o) dX(w') = sAw••)( + w')

s2(w), s1(w) being the spectrum of wave height ý(t) and response x(r), respectively. Here,
however, for simplicity we use the ordinary Fourier integral form. 3

From Eqs. 9.18, 9.19, and 9.13, Eq. 9.11 will be

[j W(2A j(L)j X(w )ej t dw+ f~ 1wA2(w 4Y(w )e*'dw + -~A 3(W )X(w )eftlwj

" ~I

= B(wo)Z(wo)ej~d6). (9.22)
2ar _

- cc

From Eq. 9.19 1

x(t - r) X(wo)eJw'e-'wrdW. (9.23)

Then setting 3

f A jow)ej"'rdw = kIraa

-f (9.24)IB(co )e~ardo =lr)

Eq. 9.22 will be in the form of a Fourier convolution, I
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f k, (r)*t -r)dr + f k2(r)i(t -T)dr + f k3(-r)x(r - rd

= J 1(r) -(t -r). (9.25)

Actually, however, taking into account the Kramer-Kronig's theory that connects
the added mass and the damping for floating and oscillating bodies and also the fact that
the restoring term a.x(t) is not a function of frequency, the equation of motion is, as
T. F. Ogilvie70 pointed out, in the form of

Go

{M + m( 00 )1 x(t) + f K(t - r) Ji(t)dr + C x(t) = f,(t). (9.26)

- co

Here m(oo) is the added mass at frequency w =

9.4 NONLINEARITY OF THE BEHAVIOR OF MARINE VEHICLES

When the waves are moderate and the amplitudes of the motions are mild, the re-
sponse of marine vehicles is well expressed by linear equations, as was shown in the
preceding sections.

The nonlinearity of ocean waves was found to be not as large as was shown in Sec-
tion 9.2. Even when the wave itself is linear, sometimes the exciting force exerted by the
wave can be nonlinear with respect to wave height. For example, for drifting vehicles or
for the slowly varying behavior of moored offshore structures, the exciting force is not
linear with the wave height because of the effects of the secondary potentials of waves.
For rolling near the synchronoas frequency, the vehicle might oscillate with such a large
amplitude that the damping and the restoring force are not linear with the velocity or the
displacement. For oscillatory motions, in many cases viscous resistance that is not linear
to the velocity of motion sometimes plays a big role in addition to that of wave making
resistance that is linear, and results as nonlinear damping.

Usually, however, even in cases of this kind, the effect of nonlinearity is assumed to
be small or weak in the succeeding discussions, as will be mentioned again in Chapter 11.
Generally, under certain restrictions (as the sum of the absolute values of all kernel func-
tions is not infinite), the nonlinear response can be expressed by
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J h(t) h fh(sg C)dr + f f h2(TI T2 )9(t-Tlý(t - T2)drldT2

-~-cc

+ f f f h3(r1,'r2 r3 )9(t- rl 9(t - 2)ý(t- 3)drldr2dr3

+ f f f hrjr1 r2 . rd) W(-r 1 )g(t-r2 ) . . . W(-ri)dz'1 dr: . . . cit1orU

n=O ft

dr~dr2 .. . dr., (9.27)

instead of by Eq. 9.16 for the linear case as,

x(t) = ho + f h(r)g(t - Odr. (9.28)

Here in Eq. 9.27

h *rr . ..~) (. ) i J * . 1, J W2 . . . cn

X exp(iwlrl+i(L2 7T2 + . .. +iWnr,)dW~dW2 . . . dWn S
n =O0- oo. (9.29)
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h,(r 1 .r2 . . • r.) is called the n th order impulse response function and

H.(w1,o 2 . . . w,,) the n th order frequency response function. The expansion of x(r) in

Eq. 9.29 is called the functional expression or the Voltera-Wiener expression. The treat-
ment of nonlinear processes from this stand point and the application of polyspectra in
the analysis of the nonlinear response system is dealt with in Chapter 11.

When the nonlinearities are expressed explicitly in the form of the equation of
motion as

Mi'+ B(x') + K(x) = F(t),

with the nonlinearity in the damping and restoring terms, there have been a few efforts to
overcome the difficulties. In Chapter 10, these efforts will be summarized.

Hasselman71 formulated the equations of motion for a quadratic nonlinear ship's

motion, expressing the wave field by surface displacement 6( x. t) = it and its normal

surface velocity (d,/14t) (x, t) 4-- where x = (x1,x2) is the horizontal Cartesian coordi-

nate vector. He derived a generalized nonlinear equation expressed in functional form
and made it clear that, through cross-spectrum and cross-bispzctrum analysis, it is possi-
ble to get the linear and quadratic frequency responses from the data obtained from
irregular waves on the ocean. For his formulation, the frequency components that are the
sum and difference of two component frequencies appear to be important. His expression
is, however, in generalized form and is not necessarily adequate for practical applications.
Almost the same content will be explained later in scalar form in Section 11.3, for a gen-
eral dynamic system with quadratic nonlinear characteristics.

279



I
I

Ii
I
I

THIS PAGE INTENTIONALLY LEFT BLANK I

I
i
I
I
i
I
!
I

I



I
CHAPTER 10

I APPROXIMATION METHODS FOR THE ANALYSIS OF NONLINEAR
SYSTEM IN RANDOM EXCITEMENT

1 10.1 INTRODUCTION

Nonlinear vibration systems have been studied for a long time. The equivalent linea-
rization is the most popular method for handling the weakly nonlinear system, and the
perturbation method has been used to obtain the equivalent linear expressions. However,
most of the studies have been concerned with systems under deterministic excitation. In
this chapter, systems under random or stochastic excitation are treated. The equivalent
linearization method and the perturbation method are treated independently for
convenience of explanation.

1 10.2 EQUIVALENT LINEARIZATION METHOD

Suppose there is a weakly damped, slightly nonlinear oscillation expressed as

I X+ a&c +fliU + (ox + kx3 = F(t). (10.1)

3 When, for example in case of rolling with moderate amplitude, the damping term

includes the quadratic term 66Liti for viscous damping in addition to the linear damping3 �ax, the restoring term includes the cubic term kra3 that comes from the shape of the right-

ing arm curve (stability curve). Generally when k ý< 0, this system is called a hard or soft
spring oscillation system.

In the deterministic case, or when this system is exposed to a harmonic excitation
F(t), this nonlinear damping can be linearized with the equivalent linear damping£

ae = a + ae' = a + (10.2)I
using the amplitude of oscillation xo.5This relation was derived by Jacobson (1930),72 equating the energy dissipation by

the damping term a-i +flliti and by ak during one period of oscillation at amplitude xo.5 In the same way, equating the work done by the restoring term at amplitude xo, the equiv-

alent linear restoring coefficient oq is as shown in Fig. 10.1,

,qw=O2+A2 k (10.3)

2l
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S~I

S~XO
0302 x + k CO)~ 2 xdx

2 1
(LL ~ f .(cu -x + kx3) dx

0 ~ 0

AMPLITUDE

Fig. 10.1. Restoring coefficient. 3
However, for the stochastic case, when the exciting term is stochastic in character,

we cannot use Eqs. 10.3 and 10.2 directly. T. K. Caughey73 formulated this case as

follows. Nonlinear oscillation can be expressed as

3 + ac + coax + V -g(x,i, t) =.f(t), (10.4)

where 17 is small, g(x,.i, t) includes all nonlinear effects, and flt) is a random excitation. I

When the equivalent linearized damping coefficient a,, and the linearized restoring

coefficientw2 are obtained,

S+ ai + oxft), (10.5) £
and the error e(x,.i, t) is expressed by 3

e(x,i, r) = (a -aq)i + (Oo -- eq)X + 7 " g(x,i, t). (10.6) 1
Namely, G 2, ) are to be set to minimize the time average 3

1;21 = Tr* - e2(xx,t)dt. (10.7)

,. 2TJ
-T3

I
282IS.. ........ .. -- .= I I N I I i l I I I ' • "



Therefore from

ale 0, 2[(a -0aeq )2+(to2 - oj2q). + ?7xg(X,, t)] 2  0 (10.8)2[a- eeq 0 e

and

--- q -0, 2[(a-aeq)x,+ (toO-to)X 2-_7Xg(X, ",t)]2 = 0. (10.9)

If this processx(t) is stationary,

]= 0. (10.10)

Therefore from Eqs. 10.8 and 10.9

aeq = a + ?7[xg(x,i, t)]/I[-I], (10.11)

[ toE =tO~ o - +?I[x, g(x,x,t)l/[x2]. (10.12)

If we assume ergodicity, the time average can be replaced with the ensemble aver-
age, and therefore

aeq = a + j7. E[xg(x,i.)]/E[i 2], (10.11')

tOJq = O2°+,7. E~x,g(x,.i)/1E~x21• (10. 12')

This shows how aeq, 2q can be estimated from the original expression Eq. 10.4. When

the form of r/. g&xi, t] is given, the equivalent linearized values aeq., wO can easily be
obtained by Eqs. 10.11' and 10.12'.

For example, for a Duffmg type oscillation,

b2 i + ai+ o{X +ECŽX3 = fit), (10.13)
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gix} = xI, Y/= Ew2. When e > 0, we call it a hard spring system, and when f < 0, a soft
spring system. 3

From Eq. 10.12'

&)2 = W[1 + xEEx4IE[x]. (10.14) 1
When nonlinearity is weak, x can be approximated as Gaussian, and then I

E[x4] = 3(E[x21)2  (10.15)

and thus 0)2 = 0o2[1 + 3ka2]. (10.16)

When every coefficient is linearized, the response can be obtained. If f.t) is almost 3
white in the important range, E[x2] for this case can be computed as

E[x2] - u2-2 3ea€". (10.17) I
Here 'r is the variance for linear oscillation. Eq. 10.17 shows that, when e > 0, E[xl] is

sm aller than c a ; by nearly 3 'EUc . 7

Applying these general results (Eqs. 10.11 and 10.12), L. A. Vassilopoulos74

obtained a.q and wo2 for ship's rolling, expressed as 5
+a• +fltaii + wOo x + iEk. x3 = f(t), (10.18) 3

aeq=a +a+ =ae + = - .fl Xo (10.19)

2q = [30+ i] • k. (10.20)

Further, assuming that the damping is small and the spectrum of the wave slopes is i
flat in the important range for rolling, i.e., u• "= or,, he derived

I
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a a+ae=a+v/-7r - wcpx. (10.21)

Comparing this expression with Eq. 10.2 for the deterministic case gives

1.6

20 x=0.8 (10.22)

I namely for our interest, xo appeared almost equal to the significant amplitude for the

stochastic case.

P. Kaplan75 used this general result and calculated the ship's rolling for the same
example that this author solved by the perturbation method as shown in the next section.
Kaplan found that the result checked very well with this author's result.

10.3 PERTURBATION METHOD

103.1 Trial for Ship's Rolling

This author showed 32 the results of the computation of nonlinear rolling using the
perturbation method. The effect of nonlinear damping was investigated first. One degree
of freedom rolling is expressed as

I "+ NI1 ± N2(0)2 + K10 = M, (10.23)

I 2" + 2 P0 + + w•o = m(t). (10.24)

Starting with a 0 order approximationoo (whiier• = 0), that is linear,

! o + 2aqo + -oo m(t), (1015)

I

S-W -_

Here ho() is the impulse response of the 0 order, name-' ., approximation 4Oo to the

exciting moment m(t),

I
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S~I

1 H4,,,(o)) ex" dr. (10.27)

c- H

Frequency response HO,,,(Aw) is easily obtained by Eq. 10.25.

Then, when the nonlinear damping term is shifted to the right-hand side of Eq. 3
10.24 and 0o is used in the nonlinear term, the first approximation 41 is expressed by

' + 2a41 + wto I = m(t)-fliloo. (10.28)

As the left-hand side of Eq. 10.28 is in the same form with that of Eq. 10.25, using I
ho,(r) as the impulse response function gives

J1 f hcm(t-,){m(u)-fliýo(u)I0o(.u)J dy, (10.29)

- Oo(t)-&i (t). (10.29') I
Since a and 0 are small, the convergence of this approximation is assumed. Then, the

correlation function is

ROO,(r)= E{Oo( + V) - 0 (t + )}{o(:) - 0 (t)} *1
(* Shows the conjugate)

=E[O(t + r)•O*(t)] - 2 9te { E[i l(t + 'r)Oj(t)] } + E[O (t + r)oi*()], (I
(10.30)

here 9te .indicates to take the real part of a function I-I.

The spectrum is manipulated by taking the Fourier transformation of RC1#1(r),

2
I
I
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s,,,,0,.) = S,•,o(o)- 2 a4 So•s,(to) . ) - IM ,{H,(to)j

+f2LHO.((V12 8 ' 1
+ w•22(o) + 3"--• S (10.31)

where Im {. indicates the imaginary part of a function . I.

Here

IS•;•(j) = 1)J Sj()S°(W 2) SýOjo(W (VI - W 2)dWIdW2. (10.32)

-00 -00

In the computation of these values, the expected values E[ . 1. 1ii7] and E[ý, l. .17 171],

that include the absolute values II1, bT I must be calculated. Here ý and 17 follow the two

variables' Gaussian distribution,

1 1 [ '2-2ea•a,,7 +u°'i2]

p(I,17)= exp 2o4' - 22 + a2-_ (10.33)

(0 is the correlation).

The expected values of the two variables such as E[I, t7 3] E[ý2, T/2j have been computed

by Isserlis,7 6 a long time ago, but no reference was found on the expected values of the

products of variance that include the absolute values as E[f,17, b71],E[ý. I-1 /.- bTI].

These were calculated by this author and were found as

I E[ý • 7 •7.I] =lc t/apo , (10.34)

I
IE[ý • LNIr/• l]- -Lo 3L +2(1 +202) xt { + F

1 (10.35)
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A numerical example for a ship model, with wo = 3.85, (a/too) = 0.06705,

= 0.08, and waves with a Neumann type spectrum and a peak at OOo, is shown in Figs.
10.2 - 10.5. Figure 10.5 shows the overall effect of nonlinear damping, and Fig. 10.4
shows the effects of nonlinearity on the term of Eq. 10.31, especially the double convolu-

tion SO (to) of the spectrum S(j(w), shown by Eq. 10.32. 3
In the same way, the author also calculated the effect of a nonlinear restoring force

expressed as !

I" + No + (KI4 + K 3, 3) = M, (10.36) 3

" + 24 + toa + k303 = M(t). (10.37)

Starting with a 0 approximation 0o, for k3  0 0, the spectrum of the first order 3
approximation 0 1 when k3 *k 0, is

SOO(w) = SOO,(.) - k3 2 9e[H•.,,,,(,,)- 3 03 s•o(.,&)]) I!
+k3114.(wj)j129aO4eS .(ro) + 6a S(' .(w)1. (10.38)

Here

S (2) f)) S,,o(,I)S,,,(O 2)So.(,O,-W,,-, 2)d,,d,,2,. (10.39)
-00 -00 1

10.32 General Formulation of the Perturbation Method 3
S. H. Crandal177 formulated a general approach to the case with a nonlinear

restoring term by the perturbation method, as follows.

The equation of motion is expressed as

.+ 2ak+ [X+0 g(X)I=ft) (10.40) 1

where E has a small value. Then X can be expanded in terms of powers of E
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F ig. 10.5. Computed nonlinear spectrum of rolling.
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X=XO+EX1l+
2X 2 + ... (10.41)

Substituting Eq. 10.41 in Eq. 10.40, gives

[io + 2ato + to.Xo -fit)) + e[X1 + 2aX1 + (ouXj + obg(Xo)]

+E2[X 2 +2a2X2 +w(X 2 +tog(X1)]+ • . . 0. (10.42)

This equation is independent of E, so each term with powers of E should independently
be equal to zero,

go + 2oao + o)Xo = fit)

x 1 + 2aX1 + o)I, =- Cog(Xo) (10.43)

i 2 + 2a. +wZX2 =- cog(XI) =-•Xjg'(Xo)

Usually the first approximationX = X0 + EX1 is used. From Eq. 9.16

X0= h(r)ftt - r)dr. Here X0 is the linear response. Accordingly, from the first equation

of Eq. 10.43

h(r) 2 , ( .- a.)

Then from the second equation of Eq. 10.43

X 1(t) =-w0 J h(r)gXo(t- r)dr, (10.45)

which is the expression for the first order approximation.

Here some expectations are
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X1 = Xo + EX1,

E[x2] = EI•X] + 2eE[XoX II

and E[X] = f f h(rj) h(r 2 )E1f(t-T)f(t-T 2 )}drj dr 2 . (10.46)

Whenflt) is stationary,

Rfr) = ELftt) JOt + r)).

For example, for Duffmg type oscillations as I
+2X + 0)2[X + EX 3] =ft), (10.47) 1

in Eq. 10.40, 3
g(X) = X 3 . (10.48) 1

Therefore from Eq. 10.45,

E[XoX] - w r f h(1)E[XO(t),4(t - -]).dr )

I

- -f~ h(r)dr f h(rl)dr1 j h(-r2)dr2 f h(r3)dr3 f h(r4)dr4

00- 0 -00 -00 ~

When Z(t) is a zero mean stationary random process, the following relations apply:

I
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E[Z(t)] = 0, E[Z(tl)Z(,2)] = R 2(t2 - t),

E[Z(t1 )Z(t2 )Z(t3 )) = 0,
(10.49)

E[Z(tl)Z(t2)Z(t3)Z(t 4)] = R2( 1 - t2 )R2 (t3 - t4 )

+ R 2 (tl - t3)R2(t2 -14) + R2(tj - r4 )R1(02 - t3).

From these relations and the assumption that the external force is white in the important
range of frequency in which the response shows a peak,

RýT) - IWob (T)

(6(T) is Dirac's function.) Using these relations in the second equation of Eq. 10.46 gives

E[x'1 X, 3cr (10.50)

It is interesting that the same result was derived by the equivalent linearization method,
Eq. 10.17.
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I CHAPTER 11

31 VOLTERA EXPANSION AND APPLICATION OF POLYSPECTRA

11.1 VOLTERA-WIENER EXPRESSION

Suppose there is a weakly nonlinear response process Y(t) which is an output of a
linear input process X(t). Both Y(r) and X(r) are stationary up to an appropriate order.
Then when the sum of the absolute values of all kernel functions is not infinite, Y(t) can
be expressed as

3Y(t)= f h(r) X(t -r) dr + f f h2(rl, T2) X@t-TO) X(t - 2) d~r

I n--O- -00 - 00nh3(rr 2 ,r3,) X(t-r) X(t -- r2) X(t•-V3) d• dr2 dr. (11.1)

I -0

3 Here hn@:l2. •* •1:) is areal function of n variables -~ oo<ri < + , i = 1,2,.

and is called nth kernel function. All kernels are assumed to be smooth, absolutely inte-
i gratable, and to possess Fourier transforms. Besides, all these are supposed to be time

invariant. When, for any ri < 0, hn(r1 , T:2 ," " = 0, then the lower limit of these inte-
gralscanbe. For n= 0,h is thevalue of Y(r) when X(t) - . So wcan include n= 0,

I ~ generally; otherwise we assume ho -- 0. When n = 1, Y(t) will be the linear system that
has been treated in Partoand o and as Eq. 9.16

3 Equatio ne11.1 is assumed to be kind of oft around the linear

graabeuandtooss o ure tanfrs Beieallo teexparesupo se Y to)etm

procea s expressed by Eq. 11.2. Accordingly, the terms for n > 2 are regarded as modify-

ing sr ad terms.

If we change the variables,

3Y(t) f f ..J f h.(t -rj, t-r 2,. t-,r,) X(rj) X(r2) ... *.

dr0dr 2 " d. . • (11.3)

Equation 11.1 or 11.3 is called the Voltera-Wiener or functional expression.

I
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11.2 HIGHER ORDER RESPONSE FUNCTION,
h.(TI, T2, - - • * );IH- (w I- 2,- • • W,,)

When h,(r , r2," • • rT,) are smooth and absolutely mitegratable, the nth order Fourier
pair exists as was stated at the beginning,

h,(rf, ... f= exp iTwrl+ W2 r-' + * n H.(W 1.c 2,. WO c,
i T2 Tdwo aW 2  ... dW,,, (11.4)

H.(w&1, W2,. .Wn)= f. Jexp[-i(wlrl+w2r2++.. nT)

-cc -00 hn(r,r 2," •r",) drldr2 . ..drn, (11.5)

hn(•l,T 2," r,.) are real functions and are symmetrical for ri,r 2  rn, ,

thus

hn,(rl,r 2, -n) = hn,,(r2, r, TO hn(r 2,r 3," • r, ,r 1 ) (11.6) 3
H n( l, 02, - -• • ) = H n( W2, I,," • -W .) = . H ,,(W 2 ,W 3 , * *" n,,W 1 ). (11.7) 3

If we regard Y(t) as the output and X(r) as the input process, h,(rl, r2,. r,) is

called the nth order impulse response function and H,,(wI,c 2," • "Wn) is the nth order
frequency response function.

When the processes are not continuous but discrete, then the Voltera-Wiener
expression for the nonlinear response Yt and linear input X, is

Yt, I gu x,_+ I I gv X,_ X,_
U=o U=ov=o

U 0 V=O- =0 &0 0911 - -U- Xr-, • X t, -,_ X,_ .u., 1. <•8'
n--I-E X X "E ,, X'..u x,_,,1 ...~2 x,._,, (11.8')

n=1 -!
n

and the following discrete Fourier pair is assumed to exist:
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G(w 1, w2, - w) e-I((0jUj' 2 +u)

U) 0=U2 =0 ,,=0 (11.9)

= 2..... G(W 1, () 2,- a),.) e i(WIut•2"2÷" "+,u,,u,.)g•"r" u. (2zt)nf f

Sdtoldt2 .. . .. dton. (11.10)

For convenience the expressions for a continuous process will be used in this
chapter unless otherwise stated.

11.3 SECOND ORDER NONLINEAR PROCESS
BISPECTRUM, CROSS BISPECTRUM

For example in Eq. 11.1, the quadratic nonlinear characteristics of Y(r) is expressed
by n = 2, and the terms n > 3 can be neglected. Then Eq. 11.1 becomes

Y(t) f hl(r)X(t - r)dr + f f h2('rl,r2 ) X(t-r 1 ) X(t-r 2) dr~dr2, (11.11)

which corresponds to Eq. 11.2 for a linear process. As the expected values of the second
moment, the auto or cross covariance functions Rn(r), Ryy(r), and Ryx(r), and their
Fourier transforms, the auto or cross spectra sxx(co), syy(w), and syx(w) played big roles
in the analysis of the responses of linear systems, the expected values of the third
moments Rxny,2 r2), Rm(ri T2), Ryn(•rI, r2), and their double Fourier transforms

Sxxx(&i,(02), sYYY(ol,(0 2), sYC(Wo,Wo2), are important in the analysis of second order
nonlinear processes. The third moment correlation functions are, for example,

Ryyy(ri, r2) = E[{Y(t + rj) - my}{Y(t + r 2) - myr}Y(t) - my} (11.12)

Rxxy(rl, r 2 ) = E[X(t + rl) X(t + r2 ){Y(t) - mY)]. (11.13)

Here E[X(t)] = 0 is assumed. Their double Fourier transforms are called the bispectrum
SYYY(W 1,0)2) or the cross bispectrum sMAW(1,o(2 ),

1 ft
SYYY(O I, wO2 ) = f f Ryyy(rt,'r2) exp[- i(w jr 1 + w 2r2)]drjdr2  (11.14)

sxXY(Wo1, 002) = (2Z)2 f f Rxxcy(rl,'r2)exp[-i(o ljr + w2r2)] drldr2. (11.15)

The inverse transforms are
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Ryyy(rljr 2) J f SYYY(wl , w2) exp[i(w lrl +w-jm)] dcoIdw 2  (11.16)3

-00 -Go

Ryyy(,r1,, 2) = f f SXXY(W 1, U2) exp[i(w jr,+ ow2T2)]d) 1C2 (11.17)I

When the input process X(t) is a Gaussian process, then I
R=ýy(T 1,r2 ) = E[X(t + rl) X(t + T2) X(t)] 0. (11.18)

Therefore 3
SXXX(0) 1, 0)2) 0, (11.19)

The bispectrum does not exist for a linear Gaussian process. 1
For a quadratic (second order nonlinear) process Y(t), Rm'rýzi, r 2) d 0,

Rxxy(r, T2) ;d 0 and the bispectrum exists as shown by Eq. 11.14 and Eq. 11.15.

Now, assuming Y(t) is a stationary process and its Fourier-Stieltjes integral is I

[Y(t) - my) f dZ(co) exp(iw t), (11.20)3

"- I
then {Y(t + r1) - my} =_f dZ(0) 1) exp(i0) It + id) 1, rl),

{Y(t + T2) - mY} = dZ(0)2) exp(iW2t + i0)2r2).

Therefore

Ryyy(rl, r2)= E[{(Y(t + rl) - my][Y(t + r 2) - my}fY(t) - my}] I
=f f f exP[i(0) •+•2+(0 3)tl] exP[i(O)'rl+o)2r 2) I

E[dZ(0)I)dZ(W02)dz(WA)] (11.21)
[tw is expressed as (03].

Because of its stationarity, Rm,(ri, r 2) is a function only of r, r2 ; it is not a func-
tion of t but is independent of t. Accordingly, the integral has a value only when

0)1 +(02+0)3 = 0 or 0)3 =-) 1- W2  (11.22) 1
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comparing Eq. 11.21 with Eq. 11.16, and taking into account the relation

f exp[i(coi+W)2+0+3 )tdt= 6(w1+0.2+0)3)],

J E[dZ(o)1 dZ(W2) dZ(W3)] 6(0)1 + o2 + o.3)dO3 = sn,,AWo13 .)2)

-0 dwo)dco 2. (11.23)

This shows that E[dZ(w I) dZ(W2) dZ((o3)] must be 0 except along the line

WI + W +(3 = 0. This Corresponds to the fact that, for the linear case,

Rr((r) f f exp i(w + w')t exp iwr • E[dZ(w). dZw']

cc -00

= expiiw r. sxx(w) dw, (11.24)

and f E[dZ(w)dZ(w')]6(w + wa')dW' = sxX(w)d(wo).
Go

By the same logic that because of stationarity, RxX(r) should be independent of t, there-

fore E[dZ(w) dZ(ca')] must be zero except when to + co' = 0, i.e., only along the line

w + o' = 0 andwo' = - w.

Because of the symmetry of Rxxx(rl, r2),

Rxxx0:l, V:2) = RXXXO'2, VI) = RM:•'- rl, T2 - TO = Rxxr'(r2 -- TI,-- TOl

= Rm(- r2,'rl -T2) = Rxxx(ri -T2,- r2) (11.25)

the spectra also have symmetry,
SXYX(O- 1, W2) = SXXX(C02, 0W1) = SXXX(O)1,-W1 -0)2) = SXXX(--) -0)2,0)1)

SSXXX(-02,-- W 1 -- 02) = SXXK(- Wi -- 0)2, W2) (11.26)

and SXXX(W.1, W2) = S * (--),-0)2). (11.27)

Accordingly, when we think of the bispectrum sxxx(W 1, W2) we must consider the

third frequency W3, besides cw and w2, that makes

0)1+02 + 03 = 0, W3 = -Ol-0)2.

From Eq. 11.26, the bispectrum is found78 to be the same for six permutations for two of
the three frequencies CO1, W2, and W3. Twelve bispectra, including the conjugate bispectra
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show the same modulus as is shown in Fig. 11.1 for 0 to @. These bispectra are repre-

sented by a bispectrum in the first octant O where V3, - W1 I 0)2. The bispectrum is

shown by the modulus and the phase angle.

-. ~-- At

I
( --( O- -.. . .... .....

1- , 'h)-

IN, R .-.•- I
--------- ----- -o ...... 7.Att

W '. (1) (01  W 3 - 2

Fig. 11.1. Symmetric character of bispectrum.
(From Yamanouchi and Ohtsu.78)

The points marked 0 in sub-octants W, 0, ,0 and @ show the same

bispectra, equal to s)a()W1, W2) at mark 0 in octant Q, and the bispectra at points x in

the six sub-octants k2'), , (D , , Q and 0 show its conjugate. Also in Fig.

11.1, the segments of line in each sub-octant are shown marked by short lines 4-., it, -" I
that correspond to the segmented line AB 4., BC-*, CD 4W in octant Q that shows the

same bispectum. At a fixed frequencyos in Fig. 11.1, the bispectrum along the segment

BA (0o9 = W3) shows interference with the two components at the smaller frequencies
w I and W2, that makes W I + 02 = 0B = 03; the spectrum along the segment

BC (0B = w 1) shows interference with one smaller frequency component 0)2 and one 3
higher frequency component w3(w3 = w2 + 0w1); and the bispectrum along the segment

CD (0B = W2) shows interference with the components at two higher frequencies

03(03 = W0I + 0w2) and w1. The hexagonal boundary shape in Fig. 11.1 shows the

I
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boundary of the frequency region in which the bispectrum can be calculated for the data
sampled by interval At.

Figure 11.2 is an example of the bispectrum of the rolling of an actual ship on the
sea, reported by Y. Yamanouchi and K. Ohtsu.7 1,7 9 The bispectrum in Fig. 11.2 shows
higher values along a similarly shaped segment ABCD in Fig. 11.1 withwB at the fre-

quency at which the linear spectrum, drawn down the side of the wI axis, shows the peak
value, that implies the nonlinear interference is higher along these shaped segment lines,
as ABCD.

au (1/SEC) ROLLING BISPECTRUM

SEIUN MARU (modulus)

Z3 2ADATA NO. 751

SKEWNESS 0.22185S4PEAKEDNESS 2.79025M
-'-- O-- 0.5 LOG SCALE

0 DEG 3/(C PS)2

ii)cr

.0.5O .5 o) (1/SEC )

a. so THE NUMBERS GIVE THE CONTRIBUTION TO THE

MEAN CUBED RECORD IN DEG 3 PER (CPS)2
tit

SROLLING BISPECTRUM SEIUN MARU (modulus)

(t)(2/SEC) . EXAMPLE: 45' - 0.45 X 101 RAD

/4 rr_* 74s4720•'~z'=

• 0 • • ,,r~o st 2,5= I• •''t ,2 r =•

0.5 .0.5 seI
**j.~j sddsr dze~.ode

ROLLING BISPECTRUM
SEIlUN MARU

(ARGUMENT)
ROLLING B!SPECTRUM SEIUN MARUJ (Argument)

Fig. 11.2. An example of bis5 rum of rolling of a ship on the sea.

(From Yamanouchi and Ohtsu,71.70 (1972).)
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As has been formulated m Eqs. 11.12 and 11.6

E[[Y(t) - myl[Y(t + ri) - mylfY(ti +Tr2) - MYJ Ryry(ri, T2)

f 7 C 17 s(0l2) exp[+ i(wlITl+C02T2)] dO) dW2 U
thus

Ejyat) _M,13] = Ryyy(O,O0) = f f S(W1,(02)dW~dw 2. (11.28)U
-W -W

The bispectrum shows the contribution of the third moment of frequency components at
three frequencies W1,W2, and W3, wherew w1 +W2 +w 3 = 0 are satisfied. When square

mean, cubic mean, and fourth power mean are expressed as I
E[[y(t) _ MY121 = o 2, E[jy(t) _ MY13] =,U3, E[y(t)_MY14] ='4,

the statistical values called skewness s, and peakedness p are defined as I
:z3

(0 2)3/2 (11.29) 3
/(- .4(11.30)

When Y(t) is a Gaussian (not nonlinear) process, #3 = 0, # 4 = 3a 4. Therefore,

s = 0, p = 3. By the values of s and p, we can show the extent of nonlinearity of the

process. 
7 9

11.4 CHARACTERS OF QUADRATIC RESPONSE TO
GAUSSIAN INPUT PROCESS

As already was shown in Eq. 11.2, when X(t), the input process is a Gaussian linear

process with E[X(t)] =, I
RxxM~r1,r2) = E[(X(t + 1) X(t + ' 2 ) X(t)] = 0 (11.31)

Sx() I, W2) = 0. (11.32) I
Several statistical relations of the quadratic nonlinear output Y(r) to input X(t) and their
derivations will be summarized as follows:

1. Mean of Y(t), E[Y(t)] =- my.
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From Eq. 11. 11, and as E[X(t-r-)] = 0,

my EE[Y(t)] f f h2(r1 ,'r2) E[X(t - rj) -X(t - T2)] eft - r2I -W -00

f f h2(r1 ,'r2) RU('r2 -rl) dr~dr2  (11.33)
-GO - O

1f= f h2(rl,'r2){ f syj.~w)expiw(r2-rj) dw}dlr

Go w~ -0

f f h2('rl,r2) exp i(wr2 -wrl) dr~dr2 fsxx(w) dw

I0 -00 cc

f H2(o),-w)sxx (W) dw (11.33')

Ibecause f f h2(Tl,'r2) eXPi(OT2 -Wrl)dri, dT2 = H2(0),- W)

2. Cross correlation Ryx(); cross spectrum srx(&).

For Rjx(r) = E[{Y(t) - my} -X(t -r) = E[Y(t) -X ~ r)} - my E[X(t - T]

inserting Eq. 11. 11 and E[X(t-rv)] = 0, yields

f hi(ri)EJX(t-,rj)X(t-r)]d-rj f h1(r1)R(r-tl)dr . (11.34)

I Therefore
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cc1 C c
sYX(O)= Ryr) •e' dr f h hI(r1)R(r-'r1) e-'adr dr

2ar f 2.7r JJ3

1 hj~i A.JIJrJ -e(4 jrI R(r-rl) e'0T-Td

= Hl(w)sn~oo) (11.35)

and Hi(w) = syX(w)/syy(wo). (11.36) 3
Eq. 11.36 shows even when Y(t) includes the nonlinear component, if the input X(t) 3

was a Gaussian process, the linear response frequency function HI (W) is expressed by the

ratio of syX (w) and skx (wv) as in the purely linear case.

3. Autocovariance Ryy (r); linear spectrum syy (o)).

As in the linear process, the Fourier transform of second order moment or the auto-
covariance function is called the linear spectrum,

Rry(r) = E[Y(t) - my] [Y(t + r) - my]

= E[Y(t). Y(t + r)] - my. (11.37) 3
Here by the use of the ftmctional expression of Y(t) and Y(t + r) as Eq. 11.11 and appro-
priate variables,

Rn,(r)= f hl(sl) hI(rI) E[X(t-sl)'X(t+r-r1 )] ds 1dr,

+ f f f f h2(U1,U2)h2(V1 ,v2) E[X@t-ul) X(t-U2) X(t+r-VI) X(t+r-v 2)]
-O - 0 - 0 -00 I

dutdu2 dv dv2 - My. (11.38)

Generally, when X1, X2 , X3 , X4 are the probability variables that are from a joint Gaussian I
distribution, then

E[ 1 X 2 X 3 X 4] = M 12 M34 + M 13 M24 + M 14 M23. (11.39) 5
Here

M = E[Xi .X]. 3
From this relation,
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E[X(t - u 1) X(t - U2) X(t + T - V 1 ) X(t * T - V2))]

I= RA(uI - u 2) Rxr(v1 -v 2) + Ryr + u I-v 1 ) Rya(r + u,, -v 2 )

+ RXX(r + u1 - V 2 ) RXX(r + U2 -- V). (1 1.39')

When this expression is inserted in Eq. 11.38, the term that comes from the first
term of Eq. 11.39' is the same as m2 in Eq. 11.33 and it cancels with the last term of Eq.

I 11.38, -my-
Then from the remainder

Ryy(r) = f f h(sl) h(rl) Rnx(r+s,-rj)

-00 -- 0

duldu2dvldv2

+ f f f f h2(u1, u2)h2(v1, v2)R) r + U 1ul - vD)Rx (r + u2 - v1)I+ 00 - c-cc-c

duldu2dvldv2 . (11.40)

The terms h2(u1, u2), h2(v, V2) are symmetrical for u1, U2 and vi, v2, and the scope of the
integral is the same as for - o -- + oo for both the last two terms. Accordingly, the sec-
ond and third terms are equal. Therefore,

00

srn(W) = yjRy(r) e-''• dr

-co 
00cc O

I = ~~ Hi (W)) 2sx + J ~ Jexp[- i[W- (W I + 2ATJ d

I x22 * (W,(0W 2) H2((01,(02) S=(&)01)S.r ((02) dwjId(w2. (11.41)

Here, using the relatiua

1 00

2j f exp [il((01+W2)-wl'r dr=6{(0wi+( 2)-&wl (11.42)
I -_00

& Dirac's delta function.

I
I
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i Eq. 11.41 gives

syy((V) = tH'((o)t2 sxo) W

0-0 •00-+2Jf f tH 2(WI,2i a z)sX((wi) S~zyýW2)6JW I- (0)- W2 )!dW dW2
_CO -00

= ýHo(w))sn•jw) + 2 f#1 2(W -W 2,(02)2sx(W -W 2)S•:(W2)dW 2. (11.43)

This shows that the linear spectrum syy(w) is the sum of the spectrum of the linear

part I 1(w)ý'sxy(w) and the modifying term in Eq. 11.43 defined by the second nonlinear

response function H2 (w - W2, w2 ) and the product of two linear spectra sxd(w - w2 ) and
sxw(o2).

4. Cross correlation of third moment Rrxx; cross bispectrum, srYx (cl), and the 5
second order frequency response function H 2 (W 1, W2).

The cross correlation of the third moment, for example Ryxx (r1,r 2), is 3
Rr-x('rl,Er2) E[{Y(t) - my} X(t -rl) X(t -r 2 )]

E[Y(t)X(t-r 1 ) X(t-r 2)] - mryE[X(t- r1 ) X(t- r 2)]. (11.44)

Here expressing Y(t) by its functional expression Eq. 11. 11 and using the same relation as
Eq. 11.39' and Eq. 11.33 form ygives

J f f h 2 (U1 ,U2 ) E[X(t-u 1 ) X(t-U 2 ) X(t-r) X(t-r 2 )I

f f h2(u1, U2)[Rnxu 1 - U2)' RXX'r -T2)

am - ~ Uo
+ RXX(zr - u 1 ) RXX(r 2 - u 2) + RXX(r2 - u1 ) Rxy(r1 - u 2 )] duAdU2

- f f h2(V1, v2 ) Rn(v,,V2) dVIdv 2 Rx,(r1 -r 2). (11.45)

In this equation, the first term and the last term are the same and cancel each other. The
second and the third terms are the same, as h(u,, u2) is symmetrical with ul and U2, and
the range of integrals is from - c - + oo for both.

3
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Therefore

R yr 1 m2 J J h,(u 1,U2) R r T- u I)R~.(2- u,) du jdu-) (11.46)
-CC -Go

and )2 c
Syý(0w1,w2) .) JJRyx(rI,T2 ) exp[-i((wi 1T + W2T2)i dr dr2

-(x -00
cc Wo

f f hI,(ul, U2) RXW'(Ti - ul)Ryxr 2 - u2) exp[- i(wC r1 + w 2r2 )]
-CC -00 dr~dr 2  (11.47)

syM(0) 1,02) = 2 H 2 (o) 1,W 2) syx(01) -sXX(wO2) (11.48)
Hz(€l~oJ) = syxx(W1. oW2)

H24 1,( 2) ) 2) " (11.49)
2 ,Fý'W 1) SXry(W2)

Here with the variables CO1, 0.' into W 1', W2' inverted by

IrJ =-(a; + oQ)
OI 1i - 0 = 0) 1 2(1501(V1 + (2 = 02 1 +W2)(11.50)

2
.hen

sy-xW 1, wD) =sy• 1 (-0w2,oJI+ W2 )==SM(wl, 01) J 'o j (1

Since Jacobian

1 0 1 1

Wi = 8), &02 = 1 1 (11.52)ll a0) aW2i -•' -

therefore
1

syyff(Wl', COD) = sY 0(ww2) X - (11.53)
2

and 2 Syxy( I1-(02,0C1 + Wo2) = sYny(w 1 , W2 ). (11.54)

Substituting into Eq. 11.49 gives

H2 (0) 1, W2 ) = SYX((O1 5 - (02, W I + 02)5)
Sxx(w 1) Sn(W2)
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In the same way, if we use X2(t) instead of the output process Y(r) and calculate the cross

bispectrum SX2M(W 1,,W2) , I

RX2n(rl, T2) =E[{X2(t) - MX ý X(t -'r 1 )(t -TA2)

= E[X(t)X(t) X(t - rj) X(t - r 2 )] - mx 2 E[X(t - r1 ) X(t - r 2 )] 3
=RAW(0) Rya(r 2 - r) + 2Rxrl) Rny(r2 ) - mX zRXX(2 - Tl)

= 2 Rxx(ri) Rx)x(r2), (11.56) 3
c 00

thus SX 2XX (0)1,W02) = ff RY(rI)RIxA(T2) exp[- i[w 1T1 + 0)2T2}] dTldr 2

= 2 sX(X<l)sxn(w2). (11.57) 3
Inserting into Eq. 11.49 gives

H2(wO1, 0 2) = SynýX(W 1, 0)2)(1.8
SYX2X(O 1, W2)I2(lt2)=SX2YXXJ(Wl,OW2) (11.58)I

and inverting the variables as in Eq. 11.55 gives
SYx•1 (Co-- 2, w1 +W22)I

H 2 (°)1 ,w 2 ) = sYXX(C 1 Wo2, l + o22) (11.59)

Both Eqs. 11.49 or 11.55 and Eq. 11.58 or 11.59 can be used for the computation of
H2(w1, W2). However in actual computation, due to the consideration of the window,

Eq. 11.58 or 11.59 is much better than Eq. 11.49 or Eq. 11.55.
5. Application of bispectrum analysis.

J. F. Dalzel155, 56, 57 -d 51 applied these theoretical relations (as compiled above in 3
items I through 4) to the problem of added resistance of ships in waves. The quadratic
process Y(t) is the resistance D(t) of ships in waves and the input process x(t) is the wave

height 27(t) in Eq. 11.1' (when n = 0 - 2) and ho = Do, as 3
D(t) = Do + f h1(r~) r(t-r)dr+ f f h2('r,zr2) 17(r-T1) ?)(t-T2) drldr2.

Then Eqs. 11.33 and 11.33' are the expression of mean added resistance in waves 3
E[D(t)] = f H 2(W,-W)s,',7(W ) dw, (11.60)

and the linear and nonlinear response functions of resistance to waves are Eq. 11.36,

308



Eq. 11.55, and Eq. 11.59 as

Hi(w) = sDh7(w)/sg,,7(W) (11.61)

H 2 (W1l,W2) = SD7 17 (9I2, (w0)2)= SD7 M (WI -- W2, W1 + W2) (11.62)

as a special case of Eq. 11.60. Therefore,

H2* - W) = SD sm,7(2w,0)=SM2o, ) (11.63)
SH 2(c,-o) - 0

Dalzell performed a series of tests in a towing tank on resistance increase on en-
countering head waves, with sea states A, B, and C, where the significant wave heights
are in the ratio of 1:2:4. The results were analyzed and the applicability of these theories
was made clear.

Figure 11.3 shows the linear frequency response function [HI(w) = GI(o) in
Dalzell's expression] obtained by Eq. 11.61 in real and imaginary parts, and Fig. 11.4
shows the impulse response function hi(r) that is the Fourier transform of Hi(w) in the
discrete form Lk,

hl{(r=Lk 6(r-kAt)}, (11.64)

At being the sampling time interval.

0.2 0.1 0.2 0.3 04 0.5 0.6 0,7 0.8 0.9 1.0 1.1 1.2 1.3

_°0.2

t) -04.

POINT ESTIMATES FROM2 -0.6 - CROSS SPECTRUM ANALYSES

0 SEA-STATEA
-0.8 6\ + SEA STATE 8

-1.0 A SEA STATE C

-1.2

0.8 - TRANSFORM OF
DISCRETE LINEAR KERNEL

14

.0.0• 23 0.4 0.5 0.6 07 0.8 0.9 1.0 1.1 1.2 1.3

(0

-0.4

-0.6

"-0.8 V0

Fig. 11.3. Unear resistance frequency response. (From Dalzell.55)

309



I
I

I
-- 0.06

-- 0.04

-8 4 -- 0.02

-COk -4

40 so

Fig. 11.4. Coefficients Lk of linear resistance impulse response function.
(From Dalzell.M)

Hereor is the nondimensional encounter frequency oa = W,/WL, where WL is the

frequency of the wave with Pl-gth equal to the model ship length L, i.e., where 3
wL = V'fi/lL. The added resistance and wave height are also nondimensionalized by
the displacement and the length of the model. Figure 11.5 shows the special case of

H 2(jI,w 2) whenwI = (),w 2 = -). The term H2(w,-co) is expressed by Eq. 11.63, and
the results obtained in regula wave tests are also shown. The agreement is excellent. I

100-
o SEA STATE A
-x SEA STATE B

80 SEA STATE C80-
/ '

I \

I 4
"• 60 i- ~i/ \ REUA \_/ NVLP

20,I

o
0.5 1.0 1.5 2.0

Fig. 11.5. Estimate of G2(oa, -a,) from cross-bispectral analysis, Fn = 0.15.
(From Dalzell.55)

I
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Figure 11.6 shows an example of the three-dimensional plot of the modulus of a
cross bispectrum of wave-wave resistance sDM(wI w 2 ). Fig. 11.7 shows the plot of the

real part of the same cross bispectrum.

0

iell

4x1O~0

I 2 0" "
0

Fig. 11.6. Isometric plot of modulus of wave-wave resistance cross bispectrum,

sea state B, Fn =0 .15.I (From Dalzell.55)

The axis Q 1, Q 2 used here is Q1 = W1 - W2, 9 2 = WL1 + w2. Figure 11.8 shows an

example of the real part of H 2(w1 , 0)2) obtained by Eq. 11.62, and Fig. 11.9 shows the

second order impulse response function h2(,r1 ,T2) in discrete form Qj k as

h2(jl,r2) -" Qjk 6(zrx-jAt) 6(F2 - kAt) (11.65)

in the form of weighting functions. These values were obtained from the data in sea state
SA. Using these weighting functions L4 (Fig. 11.4) and Qj k (Fig. 11.9), obtained from the

test data for sea state A, the added resistance was calculated by

D(n)= , Lj Y (n-j)+ I I Qjk 7 (n -j) 7(n - k) (11.66)
j=., j=.-p k=-p

for sea states B and C, where the discrete readings Tr(n -j), ?(n - k) of the time history of
wave height i,(r) for sea states B and C were used. The added resistance thus calculated
was compared with the real time history of added resistance in sea states B and C. The
results for sea state C are shown in Fig. 11.10 as an example. The agreement of this com-
puted time history with the actually observed time history is surprisingly good. Here, two
digital filters, as shown in Fig. 11.11, were used to get rid of the effect of the finite length
of the digitized impulse response functions.

3
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Fig. 11.7. Real part of wave-wave resistance cross spectrum, sea state B,3
Fn = 0.15 (normalization const. = 3.76 xl 0 -).

(From Dalzel.55)
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W DIGITAL FILTER NO. 1

0.8 DIGITAL FILTER NO. 2
0

UJUcc 0.6
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0 0.5 1.0 1.5 2.0
So I

Fig. 11.11. Amplitude response of two digital filters.

(From DalzeUI.6)

11.5 APPLICATION OF THE HIGHER ORDER POLYSPECTRA

When we have to take im. account nonlinearities of higher order than quadratic, we 3
need to consider the polyspectra of higher order than the bispectrum. For example, when
Y(t) is expressed by

Y(t) f h1 (r) X(t-r) dr+ f f h2 (U1 ,u 2 ) X(t-U 1 ) X(t-u 2)dU l dU2

+ f f f h3(ql,q2,q3) X(t.-ql) X(t-q 2) X(t-q3)dqldq 2dq3, (11.67)

we have to consider the fourth moment correlation functions and their three-dimensional
Fourier transforms, which are called trispectra. In this case, as we did for the quadratic
case, we can calculate the statistical values as summarized in the following paragraph.

There, the variables X1, X2 ,.- • X. are supposed to follow the joint Gaussian distri- I
bution, with EIX,} = 0, then as

E[X1 ] - 0, E.[X 1X2X31 " 0, E.[X 1X2 • Xs] "- 0, ••••(11.68) 3
all of the odd moments are zero. Further, as shown in Eq. 11.39
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E[XIX2X 3X 4] = M12M34 + M13M24 + MA4M23, (11.69)
.[XIX2X3X4X5X6] = M1 2MMM 5 6 + Mj 2M 35M46 + M 12 M36M4 5 .

+ M 13M 24 M 56 + M 13M 25 M36 + M13M26M45

+ M 14M 2 3M 56 +- M 14 M 25 M36 + M 14M26M 3 5
+ M 15 M3M 26 + M 15M 32M46 + M 15M36M 24

+ M16MMMM52 + M 16 M 35M 42 + M 16M 32M 45 , (11.70)

where mik = E[Xi XkI. These characters as shown in •qs. 11.6b, 11.69, and 11.70 were
fully utilized in the calculations of the following together with the symmetry properties of
h2 (ul, u2) h3( qj, q2, q3) in terms of U1, U2; q1 , q2, q3.

3 1. Mean of Y(t), my = E[Y(t)]

-- 0 tn0 Go OMI m. fcn h2 (U1 , U2 ) Ra( u2 -U)A

-00 -00

f f h2 (u1 , U2) f s(w) exp-i(wul +Wu2)} do- duldU2

I 

0 -00 
-w

=f H 2 (w -0) sxx(w) d3o. (11.71)

Equation 11.71 is the same expression with Eq. 11.33' for the quadratic process.3 2. Second order covariance function, cross spectrum

Ryxfr) =E[Y(t) - X(t - Ic

U f hj(r)RLY(T-r) d

+3 f f f h3(ql, q2, q3) Rxn(q2- qj) Rnft - q3) dqldq2dq3. (11.72)

I ~-0 -00-

Therefore

syx(c) = H1(o)sxx(o))+3 fJH*O1,-( 0 1, (0) sxx((wi) sxx(w9) do)1

-sytx(o) [H1 (o)) + 3 f H3(0w1,-0)1,0) SyX((Vl) dcO1j. (11.73)
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The term syX(w)/sxC(w) is no longer equivalent to HI(w), but is modified by some term

that includes the third order nonlinear frequency response function H 3. 3
3. Second order autocovariance function, linear spectrum

R,,(r) = E[Y(t) - my][Y(t + r) - my] 3
= E[Y(t) Y(r + r)] - m2

=ffhi(sl)hj(rl)E{X(t-si)X(r~r-ri)jdsidrI

CO I
"+Jf f h2(UiU 2) h2(VIV 2) E[X(t- u) X(-U 2) +

-00 X X(t + r-v 2)] duldu2 dvldv2  I

+f f f f 1 h3(pj,p2,p3)h3(qj,q2,q3) I
X E[X(t- PO) X(t- P2) X(t - PO -X(t + r- q) X@t+ r- q2) X(t+ r -q3)]3

dpldp2dp3dqldq2dq3

-MY. (11.74) 1

We take the Fourier transform, and the linear spectrum is, after manipulation. ,

sy(,, = sY(W ) Hj(w)+ 3 f H3(w,W3,-W 3) S ,,(,3) dW3 2

+2 fi H2W-WW)1 no )2 SXXy(W2) dO. 2 3

+6 f fl H3((w - 2, -W3,W2,0)3)J12 sxx(W -02 -03) Sx(03) dw)2dW3
-** -0* (11.75)

The first term, the term of sxx(w) of this Eq. 11.75 is again modified by the cubic

responseH 3, as was Eq. 11.73 that shows syX(w)/sXX(wO) is not HI(W) anymore, but is

modified by the effect of cubic response H 3(W 1, Wp2, Wo3). Bedrosian and Ricea° showed
this modification clearly for the case when the input was the sum of sinusoidal waves,
and showed the necessity to include the higher order terms in Voltera expansions.

3
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4. Third moment cross covariance and cross bispectunm

Ryxr(-r , T2)-= 2 ffh2(u 1, U2) Rxy•ri -u 1) Rnx(r2- U2) du IdU2, (11.76)

-OD -OD

therefore Syxywl,w2) = 2H2 (&)1, 2 ) syXG(WI) sn(W2)• (11.77)

If we use X2(t) instead of Y(t), from Eqs. 11.56 and 11.57 we get

RX2,U<T1,•2) = 2Rnx(rl) Rn'(r 2) (11.78)

SX2,r)OJ1,02) = 25XX(0)1) Sy(0)2) (11.79)

as we did in the preceding section for Eq. 11.50, inverting the variables from w1,w 2 into

WI -0)2,Wl +W2,

2 SyxM (W 1 - W2, 01+ W2) =SMyW 1, W2). (11.80)
Therefore, the quadratic frequency response function H2 (Wlw2) is obtained by

H2(0)1,(02) = S122(W 1,0)2 ) = Syx( 1, (02) (11.81)
2I1, 25Xn(0)sI)a(0w2) SnXX(W 1, W02)

_ YXX(0)lI--0)2, W I + W2) -- Syxx(W 1-0)2,(0)1 + W2) (1.1'
sn(w1-) sxx(0)2 ) sxXX( _1-(02,0_1 + 0)2)

These are the same as Eqs. 11.49, 11.55, 11.58, and 11.59 for the quadratic process and it
means that the process to calculate the quadratic response H2 (W0,0)2) is the same as for

the quadratic nonlinear process, even for this third order nonlinear process.

5. Fourth moment cross correlation and trispectrum

When Y(t) is ehpressed by Eq. 11.67. which includes the third order nonlinear for
the cubic nonlinear process term, the fourth moment cross correlation can be obtained by
the same kind of manipulation as in the quadratic nonlinear process as

Ryxxx(.1i, T:2, T3) =-E[[Y(t) - my) X(t - TO) X(t - 1:2) X(t - 1:3)

=6 f f f h3(ql, q2 , q 3 , ) Rxx(,r- q) Rxx(2 - q 2 ) Ryn@3 - q3)

-*- -Cc -cc dqldq2dq3. (11.82)

Its three-dimensional Fourier transform is called the trispectrum and is

sYDXX(0W1,0)2,W3) = 6 H 3 (0)1 ,0) 2 ,0w3) SXX(wl) $XX()2) SXY(w3). (11.83)

If we use X3(t) instead of Y(t), then

RrXX(T1,1: 2 ,1:3 ) = 6Rn(1:1 )RXX(r 2 )RXX(1 3) (11.84)

SX3Xl(W1,0)2,W3) = 6snWI)sXf(0)2)sx(0)3). (11.85)
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Therefore, the third order nonlinear frequency response function is obtained as

H3(1,W2,o.3) = SyxxX(Wl),CO2,(W3) = syxxx(Wl, U2, 03) (11.86) 1
6Sxx(O) 1)$x (w 2 )SxxýW 3) SXr OW1I,W2,W3)

6. Application of the trispectrum to ship's rolling by Dalzell.

3. F. Dalzell17 discussed the characters of higher order nonlinear responses m Vol-
tera expansion, especially the interferences between different order nonlinear responses, I
based on E. Bedi'osian and S. 0. RiceS° and also tried to solve the problems encountered
on their numerical computations. Besides Dalzell's trial55-58 on the application of the
bispectrum analysis to the added resistance of ships advancing in waves (already referred U
to in Section 11.4), he also tried17 an application of trispectrum analysis to the problem of

nonlinear ship's rolling, expressing8' the nonlinear roll damping by cube of roll angular 3
velocity.

Dalzell expressed the equation of motion as

3

x [Ajflkt)y+ Bj{Y(t)Vt Cj{Y(t)Yl = X(t). (11.87)

Then, using the so-called incommensurate frequency technique,90 the relations of 3
Ai, Bj, CJV = I - 3) and frequency response functions H,(a), H2(w1,072),

H 3(W 1,0W2, 03) were derived.

Setting appropriate values for AI to C3, and using the simulated series of wave I
heights X(r) that have Pierson-Moskowitz type spectra, Dalzell synthesized the roll
response Y(t) as shown in Fig. 11.12, using impulse responses hi,(), h 2(Ti,r 2 ) and

h3(-r,,r 2 ,-r3) obtained through H,(w),H2(wI, w 2) andH 3(W0,,W2,W3) expressed by Aj, Bj,

and Cj(j = I - 3).

3
I
I
U
I

320 1



I4

70 6Oý ý 110 120

I I

70 I0 90 10 110 1120 r1

10

I70 80 90 100 110 120

370 TIME0 100 110 1 20

Fig. 11.12. Simulated time histories of linear random excitation X(t) and nonlinear
response Ynt), and its components Yj (t), Y2(t), and V3(t)c 0, 1.0.

(From Dalzell.17)

I Here, YI(t), Y2(t), and Y3(t) show the first, second, and third terms of the Voltera
expansion of YQt) as Eq. 11.67.

Figures 11.13 and 11.14 show the first and second order impulse response functions

h1(t) and h2 0t1, t2) in the form of the weighting functions gj, g,2 and Fig. 11.15 shows a
portion of the third order impulse response function h3 01,, t2, t3) at the sequence Of t3 Val-Iues in the form 91..It is interesting that impulse responses are obtained quite beauifully
by this analysis.

I~~ ~ ~ LILA -4l~P~ILpH~0 3.0 4.0

Fig. 1.13. Truncated linear discrete kernel gjl.I (From Daizell.17)
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Figure 11.16 compares the observed and the predicted second order moment spectra

and also U1, U2, and U3 correspond to the first, second, and third terms of Eq. 11.75. It is
rather surprising that the observed value can be almost fully explained theoretically by
Eq. 11.75. It is also interesting to find in the upper second figure of Fig. 11.16, that the
linear estimated spectrum (shown by solid line) is pretty largely distorted by the existence
of cubic frequency response H3 as are shown by Eq. 11.73 and by the first term of Eq.
11.75, and is modified into U1 (w) shown by the dotted line in the same figure.

I

Fig. 11.14. Truncated quadratic discrete kernel g. I
(From DalzeII.17)

I
I
I
I
I
I
I
I
I
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Fig. 11.15. Portions of the truncated cubic discrete kernel g,3.

(From Dalzell. 17)
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Fig. 11.16. Observed and predicted spectra and the components of spectrum of

nonlinear response of the simulated system, nominal oa = 1.0.

(From Dalzer.1 7 )

7. Expansion to higher order nonlinear process.

By the same procedure as previously used for quadratic and cubic nonlinear pro-
cesses, we can go on to higher order nonlinearities. For example, from Brillinger, 8 2

__ __ __ __ __ _ .. IO i2...0.H.(W, O2,"•m) = S0)..)..X(IW2• • * ~) (11.88)m!sxX(OV) Sn(o)2).•. sxx(oJ)

I
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CHAPTER 12

I PROBABILISTIC CHARACTERS OF NONLINEAR RESPONSE PROCESS

12.1 INTRODUCTION

The stochastic or random process can be expressed as a function of time and also as
a probabilisitc measure x(r,s). Until Chapter 11, however, we have discussed the charac-
ters of the process mostly in the time aspect and, based on the ergodicity, dealt with the
correlation functions and spectra and their statistical characteristics. Especially in
Chapters 9, 10, and 11, the effects of nonlinearities on these characteristics were studied.

In this chapter, the probability distributions that characterize the response process
will be discussed briefly for reference. The main topic in Part ll is the nonlinearity of the
process. However, general considerations, including the linear cases, will be discussed* first.

Generally, the probabilistic character of the random process X(r) can be defined

completely by the series of probability distribution density functions as

pi(xl, tl)dx• the probability that X(t) is in the range x, - x, + dxt

at time tj;

p 2 (x1, ti; x2 , t2 ): the probability that X(t) is in the range xi - x, + d*l

at time ti

Iand in X2 - x2 + dX2 at time t2;

3 p 3(xi, tj; x2 , t2; x3 , t3): the probability that X(t) is in the range xi - xi + dx1

at time tl,

in x2 - x2 +dx 2 at timet2,

and in x3 - X3 + dX3 at time t 3.

In the same way pn is defmed for n=4, 5...

Here i. p. > 0

ii. p. is symmetrical for X1,t 1;x 2 ,t 2;x 3,t 3; ...

iii. the marginal probability density function Pm is

II
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PM= f I N dX+1IdX,+ 2 ... .dX- 121

n--n

As was mentioned in Section 2.1, when these probability density functions p, stay
the same when the time t, is replaced by rI+T (T: arbitrary), this process is called station-
ary. Then pI(xI, ti) is independent of time, and p2 depends only on the time difference
t2--l. Here the concept of the Markov process that is used to classify the random process
probability is first introduced.

From the characteristics of these distribution functions, the processes are sometimes
classified into three groups: (1) pure random processes, (2) Markov processes, and (3)
general processes.

For a pure random process, since the value z. at time tr is independent of any values
of x(r) at any other times ti-, ti-2 .... t2, ti, this process can be defined completely by

p (•I,'), because any higher order joint probability distribution function is U
Pn(X1, t1; X2, t2 . • • Xn, t,) = II p(xi, ti) . (12.2)

i=1 I
Accordingly, if onlypI(jq,4) is given, all other joint distribution functions can be derived
easily. 3
12.2 MARKOV PROCESS

When the process is not purely random, but when in addition to pI like pI(xi, ti) and 3
pI (xi-1, tr-1), if p2(xj-I, ti-l;xj, tJ) is necessary to express the probability characters of the
process, the process is called a Markov (or Markovian) (linear) process. The condition
that the probability distribution density functions pl(x-I-, ti- 1) and p2(xj-l, rj-I; xj, tj) are I
given is the same as the condition that the conditional probability distribution density

functionspc2(Xi, ti - ty:I Ixj-I) are known. Because the conditional probability density func- 3
tion Pc2(XJ, tjIxj...,rP-) is the probability distribution density function of this process that x

is in the range xj - xj + dxj at time tj, under the condition that the value of this process

was in the range of x-,.. - x-.., + dx... at time tj.-., that is (tj- j- q)prior to tj, and is
expressed by

Pc2(Xj, tjil)fi, týt1 ) = Pc,(Xj, ti-t 11x ) - P(xj, t-; xt.,t,) (12.3) I

Here, from t' _ characteristics of the probability distribution density function, I
1. p' 2(x,,dxj...1) ; 0 3

I
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f JPc2(XIItIX,..1)dx, 1
-m

mm

m i~. pl(jt) =f lx.tp:xt-_x.diI

Generally, the Markov process is defined as follows, using the conditional
probability - when the probability, that X(t) is in the range xj - xj + dx, at t,, under

the condition that

X(r) is xj.i -- x~ +dj att_,

X -,_2 - X.1- + dx. 2 atp-2,

I X2 - t2 + dx2, at t2,

I is- x b tl dx, at tl,

is determined by the conditional probability that X(t) is x, - xj + dxi, under the condi-
tion that at only one preceding time step t = t.-., x(t) is xj-,, - then this process is3 called a Markov process. Namely, if

Pc(xj, tjlly-1, ty-1; xy-2, tý.2; . . . ; X2, t2; X,, ti)

Pc2(Xj, tjlxji-, t1-1), (12.4)

3 this process X(t) is a Markov process.

From Eq. 12.3 and Eq. 12.4, generally3pn(Xn, tn; Xn-I, t4-1 ; . . . X2, t2 ; X1, t1) = Pc2(Xn, tnIX.-1, t-- 1)

mX pn--l(Xn .-,tn-1; Xn-2, 4 -2; ...X2, t2; X 1, tl). (12.5)

Therefore, by the same relation,

Pn(Xn, tn.; x.-1, t.-1; . . . x2, t2; x1, t)

= Pc2 (Xn, tniXn-, t4-1) Pc2(X.-l, tn-Ix- t,,-42) .

X Pc2 (X2, t2IxI, tI)PI(XI, tl). (12.6)
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From this expression, the term Markov chain is used. The conditional probability
function is also called the transitional probability function.

Also

P2(X., t.; x-2, tN- 2 ) f J p3(Xn, tn; x-l 1, tm-.; x,'2tIn- 2) dxn-1  3

andI
P2(Xn, t.; Xn-2, 4-2) = PcA(Xn, tnJXn.-2, t,,--2) p(X,,--2 , 4-2)

P3(Xn, t4; x,,., 4t.4; X._2, t,,.. 2 ) = pc(Xn, t; X,-_, tn._.lIX,2,t.2)

X p(x,2, t,-2) I

therefore 3
Pc2(Xn, tnIX,-2, t,-2) = J Pc(Xn' tn; Xn-4 , tn-,,l-X,-2, tp- 2)dX.-1I (12.7)

this Eq. 12.7 is called a Chapman-Kolomogorov equation or Smoluchowski equation for
the transitional distribution of the Markov process. It implies that to go from x,_ 2 at time 1
t,,. 2 to x. at time t,,, the path x,. at time t,,._ is not important. We can take any path to

go to x,. This characteristic is used to derive the Fokker-Planck equations, shown in the
next section.

For example, the AR model of the first order AR(1) as was treated in Chapter 5 is 3
X(t) - aX(t- 1) = E(t), (12.8) I

where a is a constant, e(t) is a pure random process (a Markovian linear process), and so

X(t) is statistically determined by the value X(t-1), that is, the value of X(t) at one preced-
ing time step. Accordingly, X(t) is a Markovian process.

12.3 GENERAL PROCESS

If we need the values of a process not only at one preceding time point t;- 1, but at I
two or more preceding time points, i.e., not only pi and p2, but also higher order joint
probability functions P3, P4, .. . the process is called a general process. However, among
general processes X(t), some can be inverted into vector Markov processes, combining
with some other variables and introducing the concept of the state space (Markovian).

Putting aside the concise theory, for example for the second order autoregressive
model AR(2) as I

I
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X(t)- a 1X(t- 1)- a2X(t- 2) = E(t), (12.9)

I we can introduce the vector process X(r) with two elements X1, X2 as
i {x2~~1(t))= a2 Xt- 1)(= aX(-)32(t) = X(t) (12.10)

I Then Eq. 12.9 can be written

I xi(t] [0 a2] [X&~-i1)] + [01 f(t). (12.11)

X(t) X(t- 1)

Here setting =X (O , [ a [,t
X 2(t) 1 al 1

Eq. 12.11 becomes

X(t) = aX(t- 1) + E(t). (12.12)

i This transformation shows that AR(2) can be inverted into a Markovian linear process or
a vector process X(t) = [Xt(r),X 2(t)]'.

By the same procedure, the autoregressive process of order n, AR(n), or more
generally the autoregressive moving average model ARMA (n, m), can be shown to be
invertible into a Markovian process, introducing the matrix of inverting functions.

The characteristics of a Markovian process contribute to the derivation of distribu-
tion functions, applying the Fokker-Planck equation, and also for the application of the3 Kalman filters.

12.4 THE FOKKER-PLANCK EQUATION

To show the behavior of the transitional probability density function Pc of a stochas-
tic process as a Markov process, formally a linear second order partial differential
equation called the Fokker-Planck equation is used. This equation was developed by
Fokker (1914) and Planck (1917), to indicate the Brownian motion of molecules, and it
has also been utilized as the equation of motion to show the behavior of the transitional

3
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probability density function of a stochastic process.s 3." This equation is, however, not
solved analytically in general, except for a few special cases, so special considerations are
usually demanded in using it.

Here the conditional or transitional probability density function p,.(x, Any) is

expressed merely as Pc, y being the value of process X(r) at a preceding time At. The I
derivation of this equation is given by Caughey.8 3

The Fokker-Planck equation for this transitional probability function is in the form

[PC a D(l)(x) + 1 02D(2)(x) Pc. (12.13)

at ax 2 ax2  I I
Here D(I)(x) and D(2)(x)>O are called the drift coefficient and diffusion coefficient,
respectively, and are related to the first and second moments of this distribution as

Dtx)= o -r (yL-x)pC(x, Aty)dy (12.14)
A oAtj-

Go I
D(2)(x) = lim 1 f (yx)2p,(x, Atly)dy. (12.15)

&t-'0 At"-

Generally these are functions of time t.

As was stated before, when the general process is inverted into a vector Markov
process X(t) of N dimensions as X(t) = [X (t), X2(t) . . . Xv(t)]', the Fokker-Planck
equation is more generally in the form 3

apC [ ~aD1 1 N a2  (2) 1
p - (x) + -D,. (x) Pc (12.16)=1 - I ,• V

at L.= a x ) 2 Q- axiax j

where

Di (x)= lira f_ (yi-xO)pA(x,AtIy) i dy (12.17)
A -O At = J

D'x)(2) =ti 1  f (y --xi)(yj--xj)pc(x, Atl y)rl dy (12.18)

x, y are the values of process X(t). I

3
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Solving Eqs. 12.13 or 12.16 gives the transitional probability functions. Since these
equations are solved analytically only for some restricted types, several methods, such as
a simulation method, transformation into a Schradinger equation, numerical integration,
potential method, and so on, are used to obtain the solution.

When, by the elapse of time, the transitional probability function pc(x, t'y) tends to

p(x) as its limit and becomes stationary, independent of time and its initial value, then in

the Fokker-Planck Eqs. 12.13 and 12.16, setting t -- , = 0,at

1 N N a D 12)(x) p(x) - N a_ [D l)(x) p~) =0, (12.19)
=1 11-

where p(x) obtained as the solution of this equation is an N--dimensional joint distribution
related to the N-dimensional state space for this vector process X(t).

Under some considerations and restrictions, these methods can be expanded to deal
with nonlinear processes.

For example, following Caughey,8 3 consider a nonlinear oscillation with nonlinear

restoration under Gaussian (mean = 0) excitation as

X(t) + fiX(t) + F{X(t)} = ftt) (12.20)

E[ft)] = 0 (12.21)

E[/tl) flt 2)] = - 6(t1 - t2) (12.22)
2

here Wo/2 shows the white spectrum of the excitation, and 6 is the Dirac's delta

function. From the transform IX2(t) = X(t)

X2(t) = i(t) (12.23)

and introducing the vector process

X(t) = [Xl(t), X2 (t)]' = IX(t), X(t)]', (12.24)

from Eqs. 12.20 and 12.23
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f X1 t) = X2(t)

X2 (t) = -fX 2 (t) - FIX1 (t)} +At). (12.25)

Coefficients Dý')(x), and D0 (x) for the Fokker-Planck equations are, when we

insert Eq. 12.23 into Eqs. 12.17 and 12.18,

D () = lirn E[AXI) = = x 3
1 At--- 0 At =X

(12.26)E[_2] I
D(n)=[Air]

At - 0 At

I
D•]2 = -• lin EAX2] I

A--0 At

(2)= (2)= =m E[AX IAX2] 0 (12.27)
12 21 A,- 0 At

At -- 0 At

Substituting Eq. 12.25 for E[AK 2] and E[AX2] and using r as a dummy variable in
t gives 3t+t ]

E[ I-PX2(t) - F(XI(t)))}At + J I
A~t

D21 lira
At --, 0 At

= -f#X 2 -F(X 1 ) (12.28)

3
I
U
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I2
Ss +Ai 2E j-X2()-FXj~t)j~+ fftt)dr

D 2 i - [1 21 Ji

= firn E [t-X 2 -F(X 1)j2Ar +2{-#X 2 -F(Xj)} +A fr)dr.J5 A-- 0 f

+ lira E f(rl)ftr2 )drdr 2/
& At0 [ t [ tf

Wo (12.29)

2

Now, the process is stationary, so with Eq. 12.19, the Fokker-Planck equation becomes

Wo a2p a
Wo_ 02 zp + PX +F(XDI)] = 0 (12.30)

This is called the stationary case for Kramer's equation and has been solved by several
scholars. Following Caughey-Wu, the solution of Eq. 12.30 is

p(xl,X2) =p(x,i) = C exp + F( )dt}]. (12.31)

Here C is the coefficient for normalization and ý is a dummy variable for xI. Equation

3 12.31 is in the form of

p(x,) = C exp -4P - (12.32)

I• where E is the total energy per unit mass of this system

I
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xa I

E - + F(•) •. (12.33)

0I
From Eq. 12.31 I

p(x,x ) = p(X)p(x), (12.34)

anda

p~i) = exp{. jk2 (12.35)3
SI

p(x) = C exp Joo F( j (12.36)Wo f
we find the probability distribution density function of the velocity x is a Gaussian.

More concretely, for a nonlinear spring system, F{X(t)j in Eq. 12.20 is

F{Xi(t} = F[X()} -=W2X(t) + lEgLX(o}] (12.37) I

and the equation of oscillation Eq. 12.20 is I

Xý(t) + Ok(:) + cvP[(w) + Eg!X(t)}] =f).(12.38)1

Here for hard spring type, E > 0, and E is on the order of x(t)/glx(t)], glx()} = I
-g1-x(t)}, and as Ix(t)i > 0, x(t)glx(t)} > 0. Now we define oo as the

undamped (when P = 0) natural frequency of oscillation.

The mean square value of this oscillation is

3
I
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E{X2(tj j fpx x-xdXd

I-
f = J[~{ + lEg(x)} -xEg(xjP(x)dx. (12.39)I --

1 From Eq. 12.36 and Eq. 12.37

P(x) = C exp fF-y 4 Cex - X +eGx0 2
G(x)= g(04=

I oo
For a corresponding linear system, oX2 = WO2

For the linear system, c = 0; therefore from Eq. 12.39,* i
E[X2(t)] - OX2- xfg(x) p(x)d.x

I -"

X0 .EEX(X) gfx(t)}].(1.)

For a hard spring system the mean square of the displacement is always smaller than
it is for the corresponding linear system.

For the so-called Duffmg type system, g(X(t)I = X3(t), and the equation of motion
is

+X p(t) + &)•, o {X(t) +, X3(t)I =-ft). (12.41)

3
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I
Therefore from Eq. 12.40

E[X2(t)) - o' -,E E[X4 (t)]. (12.42) 1
For the Gaussian process E[X4(t)] = 3o,. Therefore in this case, the order is also in

E[X2(t)] -- a42 - 3wr4ý. (12.43)

It is interesting to find that this approximation is the same type as Eq. 10.17
obtained through the equivalent linearization method and Eq. 10.50 obtained through
the perturbation method.

12.5 PROBABILITY CHARACTERISTICS OF AMPLITUDES,
MAXIMA AND MINIMA

S. 0. Rice9 has shown that, when the joint probability density function of x and

i, the values of a stochastic process X(r) at time t, and its derivative (d/dt)X(t), i.e.,

p(xi), are known, the frequency of occurrence of any threshold value crossing or zero
crossing is easily derived.

For example, the expected value of the frequency of occurrence of the process X(t) j
for the upward crossing of a threshold of level a, E[N+(a)], is

E[N÷(a)] -f xp(a,i.)di. (12.44)

0I
If x(r) andi(t) are independent, p(x, i) = p(x). p(i), therefore

E[N+(a)] [p(x)]. 1 )!

E[N+(O)] p(x)].o (12.45) 1
When the power spectrum is narrow banded, the amplitude of the sample process

varies slowly, just like the envelope of sine waves, and ,R the result, the process is
assumed to have an extreme positive value a, at each cycle of this sine wave. n

Then the probability distribution is
Pp(a, > a) = E[N÷(a)] = 1 -P(ap !_ a). (12.46)I

E[N+(O)]

Therefore, the probability density distirbution is i

I
I
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pp(a) dP -- d(E=0[N(a)]) (12.47)

da \E[N+(o)]) da

When X(t) and X(t) are independent,

pp(a) - x (12.48)
p(O)

Expanding this kind of relation, Longuet-Higgins,12 and Cartwright and Longuet-
Higgins,13 developed the well-known results for the distribution function of extreme
values of a general process with various bandwidths.

The probability distribution density function for extreme values of a process X(t),

or ý 1, 2, ... normalized by the standard variation of the original process cY, as

I/i12= •/ar = t was derived as,

r -'

C2 2 1 .2I - . 1p(ý)= f V2+ 0 -- f 2 ýe7-2 e -T -2 (12.49)

as shown in Fig. 12.1, where e is the so-called bandwidth parameter of the spectrum

(=morn4 - ?r•) (12.50)

m. being the moment of spectrum

Jn W's(W)dW. (12.51)

When e - 0, as for a narrow banded spectrum, p(ý) becomes a Rayleigh distribution as
is well known,

pO e 0 (12.52)

or
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or

__- I

At the other extreme, when e = 1, as when ripples are superimposed on slowly varying I
waves,

1 -I1
pO e 2 (12.53)

P(ý) e Aio • pX), (12.53')

namely p(Q) becomes Gaussian and it is the same as the Gaussian distribution that

governs the original process x(t).

When e is between 0 and I, p(ý) is given by Eq. 12.49 and is between the I
Rayleigh and Gaussian distributions, as shown in Fig. 12.1, and is now popular for us. I

0.5-

p(•;) £= o
0.4 0.4

0.3 0.6
0 . 0 .8

0 1.0
0.2

0.11

-3 -2 -1 0 1 • 2 3 1
Fig. 12.1. Probability distribution density function of extremes.

(From Cartwright, Longuet-Higgins.13 ) 3
From this distribution, the expected highest value of 1/n and the expected highest

values of N independent samples have been derived as functions of e. The derivation will I
not be referred here, as they are well known.

I
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Equations 12.46 and 12.47 can be applied to a nonlinear process as long as the
process is narrow banded. Crandall" analyzed a hardened spring oscillation system, the
same as the one analyzed by Caughey53 utilizing the Fokker-Planck equation, as was
shown in Section 12.4. Equation of motion is by Eq. 12.20,

X(t) fliX(t) + FfX(t)} = ftt).

He obtained the average period r(a), the probability distribution function of the peak val-

ues pp(a), and the probability distribution function of the envelope p,(a) as functions of

the amplitude a by introducing the potential energy per unit mass

V(x) = F(ý)di. (12.54)

0

The solution of the Fokker-Planck equation, Eq. 12.31 (when •x) is Gaussian) is

l~2

where C is a normalizing constant that makes

GODO

f fJP(x,.i) dtdi= 1.
-00 -00

The results are, as for the envelope process a(t),

1
V(a) = -i2 + V(x), (12.56)

2

a [21V(ao-V(xQ)1I

P(a < a) =4 fdx f p(x,) di (12.57)

0 0
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Through manipulation, the following were derived:

pc(a) = C" r(a) F(a) exp •_ La) =pp(a)v +r(a) (12.59) 1

and also,

pp(a) = F(a) _ 0, 2 exp C,2(26)1

where v• is the expected number of threshold crossings per unit time of the level x = 0 1
with positive slope, and can be derived asvo = Cd2; r(a) is the average period as a
function of amplitude a. i

Crandall showed the general solution for the following two nonlinear cases:
i) for a hard spring Duffrag type system, 3

F{X(t)1 = w2 {X(t) + 3(t),(12.61

ii) for a set-up spring system, as in Fig. 12.2,

F[X(t)} = W•J {X(t) + E sgn X(t)}, (12.62)

IU
I
I
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F (X)

•--F(, ) X

Fig. 12.2. Displacement-4orce relation of set-up spring.

as are shown in Figs. 12.3 and 12.4. Hereor is the standard variation of the linear system

when c = 0. These figures show that the probability distribution of extreme pp

varies considerably with the extent of nonlinearity, expressed by the value of e.

1.5

E - 4.0

1.0o,

I 1 a 23pp ax

0.5-

/ -'\LINEAR
\' CASE)

0 1 a 2 3

Fig. 12.3. Probability distribution density of the extreme (peak)
values of Duffing type oscillator.

(From Crandall.84)
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1.5 = .

F~ozr -

- = 0.5I
1.0 5 2o-

o,=02., I
LINEAnd CASE. E 0

0.5- RAYLEIGH 1

II
0

0 1.0 a 2.0 3.03

a1

Fig. 12.4. Probability distribution density of the extreme (peak)
values of oscillator with set-up springs.I

12.6 APPLICATION OF THE FOKKER-PLANCK EQUATION FOR
THE ANALYSIS OF SEAKEEPING DATA

As has already been mentioned, the Fokker-Planck equations have been solved only
for a restricted number of cases, and this has made the applicability of this equation rather I
difficult in many engineering fields. For example, this method was applied to the nonlin-
ear system with nonlinear restoring terms and with Gaussian white excitation, as shown
in the preceding section, but the method has been considered inapplicable to the system I
with nonlinear damping or with colored noise excitation. A few efforts have been made to
overcome these difficulties, for example by J. B. Roberts. 59 His work,60,61 especially in
the analysis of nonlinear seakeeping data, will be summarized briefly. I
12.6.1 Nonlinear Analysis of Slow Drift Oscillation of

Moored Vessels in Random Seas 60

Utilizing the known characteristics of the Fokker-Planck equation, RobertsW
analyzed the statistical behavior of the nonlinear slow drift motion of moored vessels.

Assuming that the waves j7(t) are narrow banded with band width parameter e, and that I
the drifting force D(t) can be regarded as proportional to the square of the wave height, he
modified the expression of wave height q(t) and drifting force D() to 3

q(t) = H(t) cos [wot + a(t)] = hA(t) cos [wot + a(t)]

= h[{a2(t) +b2(t)} 1/2 cos [wot+u(t)]I

= h[a(t) cos cOot-b(t) sin woot], (12.63)

3
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here wo is the peak frequency of the narrow banded spectrum of the wave, and

D(t) = a[H2 (t)] = a'[a2 (t) + b2(t)] = D+ k'4(t), (12.64)

where H(t), hA(t) are the amplitudes of the envelope; a(t) and b(t) are components of

A(t); a(t) is the phase lag; 5Dis the mean drifting force; and (r) is the white noise, as will

be assumed later.

The equation of swaying motion of the vessel was expressed as

(M + m)ý + F(x,) = D(t) (12.65)

or

x+ftX,.i) = fip2(t) + b2(t)] (12.66)

where (M + m) is the virtual mass of the vessel. Then with a(t), b(t) as the output of white

noise g(t) through linear filters, the equation of motion was modified to

S+ fz )= ý(t). (12.67)

The term z is a vector Markov process with four elements [x,i, a, b], and the Fok-

ker-Planck equation of this four-element variable z(t) was then derived. Then since

A(t) can be generated as the output of a nonlinear first-order system with a white noise

input ý(t), the process was inverted into a three-element vector Markov pro-

cess, y(t)[x(t),4(t), A(t)], and the Fokker-Planck equation for this process was alsc

derived.

However, the solution of the multidimensional Fokker-Planck equation has a num-
ber of difficulties, so Roberts advanced the approximation further, and expressed the
drifting force as

D(t) 'h+ k':(t), (12.68)

the sum of the mean drifting force 5, that can be approximated as a'e, plus a white noise.

Under these approximations, the equation of swaying motion is

.i + g(xi) = d + 4k(t), (12.69)

where d= D =
(M + m) (M +m)

k= k'
k (M-3)
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The two-dimensional Fokker-Planck equation was derived as

ap a a k a p (12.70)
at _•l(Z 2 ,p) + -_(g, P)+ (12.0 8at¥= Z 2 2z

where Zl = x, Z2 = i, andp is the transitional probability density function. i
The stationary solution of p is obtained by (ap/at) = 0. As g(x, i) in Eq. 12.69, in

its general form

g(x, x) = yF(x, x) + G(x), (12.71) 3
is used.

Then the joint probability density function of swaying motion p(x, i) is the I
solution of Eq. 12.70, when (8p/at) = 0,

p(x,) = C xp + U(x)-dx (12.72)

where

U(x)= f G()dA (12.73)o I
is the potential energy for restoring forces, C is a normalization constant,

and

Q(V) B- ". (12.74)

Here13

B(v) - F F(x) .2(v - U(x)dx (12.75)

1 (
C(V) = "( /v- U(x)ddx (12.76)

R

I
I
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A(v) AJ-x) (12.77)

R

The integration range R is such that U(x) < v. Especially for Duffing type oscillation the
equation of motion, Eq. 12.69, is expressed by

3,•+ 2t+ X+A = ký+- (r). (12.78)

Here r is replaced by nondimensional timer, r -- w, w, being the undamped natural
frequency in the linear case (A = 0), and the nondimensionalized equation is

.' + 2 ýi'+x' + A* x' 3 = d* + 2 ý1/ 2ý(r), (12.79)

where the differentiation is with respect to r and

A 2#,E [1 1 *21/2 E
x' -- A*= -ýx3, d*= (k 1/ w4EI tax aWk[ e*a,,

The joint density distribution for p(x', i') and the probability density distribution
function p(x') is, from Eq. 12.72,

p(x"',')= 2 ej, [ --2" + 2 4 - d *' (12.80)

and

p(x') p(x', i')dx'- C e 2- -+ 4 d*' . (12.81)

Here C is a coefficient for normalization,
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CD OD p(x'x')dx' x' = 1.I

-cc -OD

Roberts calculated numerically, for a Duff-mg type system, with various ý, A *, and
E * and compared them with the simulated results. Figure 12.5 shows an example of his
results. He compared p(x) calculated by Eq. 12.81 under the white noise approximation
with the result obtained by simulated data and found that the agreement is good and quite
different from the Gaussian distribution for A * = 0. Once p(x) of the displacement x(t) is
determined, p(T), the probability distribution of tension on the mooring, can be derived as 3

p(T) 2- (12.82)KU
where the tension is expressed by 1

T = w(x). (12.83)

S\(GAUSSIAN).

10-2 \

-4 -0 12 -

II \\ 1

~L* = 05 0., * .!.,odgtlsmlto siae

/\

/

WHfTE NOISE
10-' / APPROXIMATION •

--4 -3 -2. -1 0 1 3

Fig. 12.5. Probability density function for displacement response; 3
2° = 0.5, • = 0.05, e" = 1.0,0o digital simulation estimate.

(From Roberts.r) I
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12.6.2 Stationary Response of Oscillations with Nonlinear
Damping to Random Excitation

As was mentioned at the beginning of this section, the Fokker-Planck equation has
been solved only for restricted cases, such as nonlinear systems with nonlinear restoring
forces or systems under white noise excitation. Roberts59 removed these restrictions and
studied the behavior of the Fokker-Planck equation for a system with nonlinear damping.
For a nonlinear system with nonlinear damping, the equation of motion is

i +flF(x,i) + G(x) = n(t), (12.84)

where P8 is small, F is an odd function of i (odd as was used by Dalzell8 ' is more

convenient to manipulate), and n(t) is white noise, G(x) being the restoring term.

The two-dimensional Fokker-Planck equation for

p(x, X) = p(x, ylxo, yo; t)

is the same as Eq. 12.30, for Eq. 12.20 in the form,

ap - y-P +±a [[F(x, y) + G(x)}p] +- - -• (12.85)

"at ax ay

and is difficult to solve for general F(x,y), so Roberts inverted this two-dimensional
Fokker-Planck equation into a one-dimensional Fokker-Planck equation, introducing a
physical variable called the energy envelope V(t)

V(t) = + U(x), (12.86)
2

therefore i = !2V(t) - U(t) where U(x) f G()d.

0

The one-dimensional Fokker-Planck equation for p(v) = p(vlvo; ) is in the form

--- [C(v)p] (12.87)

where I is the strength of excitation as I ff - in Eq. 12.22 or Eq. 12.29, and

B(v), C(v) are as in Eqs. 12.75-12.77
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B(v) = Fix v72(v - U(x)ldx
C•v) J•i• Tix: dx I

R

C(V) = J•(v) ,/-U~x) d

A2v FIv-- U(x)
R

The integration range R is such that U(x) < v. The general stationary solution is given as

p(v) =lirn p(vlvo; t) - A(v) exp- (.Q(V)) (12.88)1

where U
Q(v) = (12.89) I

0 Cý

and k is a normalizing constanL Then, from the relation of v, x, y(= i) and reverting to I
the original x, y variables,

p(x, y)= lim p(x, ylxO,yo; t) = C exp{- (3E.)[.Y 1 ~j. 1.0

When the equation of motion is expressed as

-�x~ oWoi(1 + etil") +WC x = n(t), (12.91) 3
now wo being the natural frequency of the linear (E =0) system, Eq. 12.90 becomes I

p(x, y) = C po(x, y) exp{- a,* I. (x 2 + y2 )

where 3
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f* EW 060, po(x' y) = exp{-(XI + 1-1) (12.92)

X(t) .*(t (io A1/x=-, y= •, 0o= "(F
Co OGo0 4  0o

ao is the standard deviation of response when E = 0, E * = e/•wo is the nondimensional

nonlinearity parameter, and po(x,y) is the result when E* = 0 (C = I when E * = 0).

From this result, the statistical moments of the response can be calculated. For
example, Roberts obtained

" 20=[,;' e6"(1 -erf 0)]01- (12.93)

001

-(3•,)E 2

He calculated the equivalent linear damping, as discussed in Section 10.1, using the
general expression Eq. 12.91 and calculated

a' = 6* -+I(12.94)

for n = 2 in Eq. 12.91, which is a closer approximation ofa 2 than Eq. 10.17. He also
calculated the corresponding perturbation solution as

a2

This is slightly different from Eq. 10.50, which was shown for small E. All three results
are compared in Fig. 12.6. Robert calls his method, which introduced the energy envelope
V(t) as Eq. 12.86, the Markov envelope theory, and indicated in Fig. 12.6 as ME theory.
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0.3 PERTRBATION j
0.2 THEORY

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fig. 12.6. Variation of the rnban square of the response with E*.

Simulation results: - •o = 0.05, + ýo = 0.50.
(From Roberts. 59)

The equivalent linearization theory is abbreviated as EL theory. In this figure, only the 3
perturbation theory appears different from the rest, but here we have to remember that in
the perturbation method this is the first order approximation and we can improve the ap-
proximation by increasing the order of the approximation, as indicated in the discussion
in Section 10.2.2.

12,6.3 Nonlinear Oscillation in Nonwhite Excitation

Roberts 61 further extended the scope of applicability of this method - d solved for

nonlinear rolling in nonwhite excitation. The equation of motion is now

I" + f() + k(o) =M(t) (12.96) 3
or 3

'+ F(0) + G(0) =x(t) (12.96')

where x(t) is a nonwhite excitation, and can have a colored spectrum.

Again, he adopted the total energy envelope as Eq. 12.86

V = + U(O)

where

o, 1
01

and considered that this was slowly varying.

3
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He set

2

or (12.97)

U(O) = vcos2  0 = V2cosr

introducing the phase 0 as shown in Fig. 12.7. After manipulation of the relations, the

equation of motion, Eq. 12.96', was inverted into the equation of V and j. When the

phase process 0 was modified into a process (t), and the joint process Z = (V, A) was
made to converge into a Markovian process. the transitional distribution function

p(ZIZo; r) was found to be governed by a Fokker-Planck equation of second order. The

stationary solution of the Fokker-Planck equation p(Z) was obtained, and from this
expression V and A were found to be uncoupled, and p(V) was calculated. With the

relations of V, 0 and , p(V) was modified into p(o, ).

UV vs.e,4ý

Fig. 12.7. U, V vs. 0,.
(From Roberts.61)

For nondimensionalized, nonlinear rolling expressed as

ý + a4 + bl~l 0 + '0 - 03 = x(,), (12.98)

Roberts calculated the probability density function of the nondimensionalized amplitude
of rolling A by the ME theory and compared it with the Rayleigh distribution obtained by
the linear theory as in Fig. 12.8. He 61,' 6 also compared his results with the nonlinear sim-
ulated data obtained by J.F. Dalzells5 to show the validity of his method. Examples are
shown in Figs. 12.9 through 12.11 for a variety of damping coefficients a and b. where
9 = (wp/lo, wp is the peak frequency of the excitation, and a. is standard deviation

of the input process x(t). Process 3 in the figures is a wide banded excitation for this
example. He showed many other results of comparison for other types of excitation with
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different bandwidths, named Process I and Process 2, used in the simulation by J.F.
Dalzell.8 5 The deviation from the Rayleigh distribution in Figs. 12.8 to 12.11, and the
relation of the standard deviation of roll cR to that of input o. in Fig. 12.12 shows the

extent of nonlinearity. The applicability of the method was also discussed.

1011

,, / 
!.

PIA) j

100

P(A) RAYLEIGH I

-PRESENTTHEORYPRESENT THEORY

WITH LINEAR RE-STORING MOMENT

1- P
0 0.1 0.2 0.3 0.4 A

Fg. 12.8. Probability density function for amplitude A:
a = 0, b = 1, er. = 0.036, Q = 0.90,
Process 3. (From Roberts.8 1 ) 3

0.999 PRESENT - RAYLEIGH

0.99 THEORY I
0.95 f I
0.90

0.80
P) 0.70

0.40

0.301
0.20 DALZELLS SIMULATION
0.10 - ESTIMATES
0.05 0b-
0.02 =

0 0.1 0.2 0.3 OA 0.5 0.6 A j
Mg. 12.9. Cumulative probability distribution for amplitude A:

a = 0, b = 1, a. = 0.036, Q = 0.90,

Process 3. (From Roberts.6 1 ) 3

I
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Fig. 12.10. Cumulative probability distribution for amplitude A:
a = 0.01, a. = 0.036, 9 = 0.90, b = 0.1 and 1.0;
Process 3. (From Roberts. 6 1)
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Fig. 12.11. Cumulative probability distribution for amplitude A:
a = 0.03, Ui, = 0.036, Q -0.90, b = 0. 1 and 3.0;
Process 3. (From Roberts.6 1)
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DALZELLS SIMULATION
b bfl.0

0.15-

OR

0.05-
a 0.01

0 0.01 0.02 0.03 0.04 5
Fig. 12.12. Variation of standard deviation of roll aR with standard deviation of wave

input a,.,: a = 0.01; Q = 0.90; b = 0.1, 0.3, and 1.0; Process 3.

(From Roberts.61)

12.7 PROBABILITY DENSITY FUNCTIONS OF AMPLITUDES, EXTREME
VALUES IN RELATION WITH THE FUNCTIONAL POLYNOMIALS

12.7.1 Narrow-Banded Case

As was mentioned in Section 11.1, when a nonlinear response z(t) was expanded by 3
the Voltera expansions (or functional expansions)

z(t,= n, jj.j. gn(lr 2 . . . . .rn) x(t-rl)x(t-r 2) I

n
vn4.... x(t-r.) dr1 dr 2 .... drn, (12.99)

the terms for n_>2 can be considered as the modifying terms of the Taylor expansion of 3
this process around its linear term for n=l. If we take until n=2, and using small C, some-

times the response z(t) is expressed as

Z(t) f J gl(r) x(t- r) dT• E f f g2(T1,'r2)Xt -1•)X(t-C2) dr•dr2 . (12.100)

The derivatives in terms of time is g
z(t)= f g (I) (t-)r) d+2Ef f g2(,1.,2)xi(tx- lXt- 2) dr1dr2, (12.101)
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thinking of the symmetry character of g2(Tr, T2) = g2(T2 , TI). On the basis of this expres-
sion T. V'mje87 formulated a general method for getting the probability distribution
function of the extreme values, under the assumption that the response z(t) is narrow
banded and the input x(r) ýs Gaussian with variance a-. His method is also based on the
assumption that the probabiimry distribution function of extreme values can be obtained by

the joint distribution function p(:, .4) only.

Now, we start from the statistical moment generating function to get p(zl,.:2)

[here z2 = z(t), z•2 = i(t) z], that is, from the double Fourier transform of p(zl,z2),

0p(01, 02) = E[expfi(01 zl + 02z2))]

= Jf f exp(iO 1z+i02z 2)p(Z1 lZ 2)dz•dz 2. (12.102)

00 -W

Then expanding exp (i61z1 + i02z2) into a series gives
exp (i01zI + i02z2) = 1 + T 1 (12.103)

assuming m, n are positive integers whose sum is greater than zero.

Inserting Eq. 12.103 into Eq. 12.102 gives

0(0 1,02) = 1 + I 0(i'1)m(i02)n. (12.104)
m,n m!n!

Here

=E[zTl, zDJ = f ~f zM1z~ P(z1 , Z2)dz~dZ2. (12.105)
-cc -00

From the Fourier inverse transform of Eq. 12.102,

P(ZI, Z2) f f I (01,02)eXP{-i(6lzl +02z2)}dOidO2. (12.106)
-- • -- g

Putting Eq. 12.104 in Eq. 12.106
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( I, 2 2 f f M n(jOl) m(jO2)~'expf j(Ol-1+0 2z 2)}dftjdO2.

|j) m' MW n

(12.107) 5

This Eq. 12.107 shows that p(z 1, z2) can be calculated if we know all the mrn th order
moments of this probability function. I

On the other hand, by the definition of the cumulant ,, and the cumulant
generating function K(iO 1, i0 2), 5

k1ll(iOl)(i2) k12 (i01)(i02)2+
K(i01, i62) = log•(01, 62) = -(6)i 2  +-(i 1 )i2  ) " "+

UP1 1!2!

n-"m!n" (i)m(iO2)!" (12.108) 3
Therefore

(0,02) = exp{K(iO IiO 2)jCXP I k{ n m(O)(i82)} 3
kl . '-- , 2! km,, (iOj) "(io.)" I

I +v{ UJ')(i 2 )} ++{ rnn - ~n(O~l
! 13 I, ~!2 n

+ - . + (12.109)
3!

When we insert this0(01,0 2) into Eq. 12.106, f
Oa O00

p(Z1, Z2) I exp{K(i0 1, i02) - 0(OZI + 02Z2)}d61d62
(2jr)2

I- exp I- ( k l00m(02)" eledz'+)OIdO 
2.(2~r) M.n J 3!

From Eqs. 12 104 and 12.109, kmn,, and um,, are related as follows:
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I
(order in E)

ko, =,uol .. . (0)
ko2 =Ao02 - 9201 . . . (I + C2)

I ko3 =,U03_-3PO01I,0 + 2,Uo3.. (C" + C)

Skjo =/ujo .. .W•

kll =,lll-lQ•Ol . . . (0) (12.111)

k12 =A 12 -1 u0o2 - 2AoII+ 2,u41 u01 . . . (E + (13)

k2o =420-U10 . . . 0( +E2)
k2l =,U21 - 2#IQuI I -A0o142o + 2#2ouo1 . . . (0)

k3o=,Uo-3 1QU2o+ 23o . . . (E +c3 )

Following these general formulations by Vmje, M. Hineno67 calculated the proba-
bility distribution function of the wave height, treating the wave process as nonlinear, as
was mentioned in Section 9.2.1, and will be summarized as follows.

From these relations with au,,, the order of k. in c's was obtained, which is a

smallness parameter that appeared in Eq. 12.100 as is listed in Eq. 12.111. Expanding
Eq. 12.110 arounde = 0 into a Taylor series and truncating at 0(E) gives

PUl, Z2) f ~) f ex _, ,< • .( 2- - f f o . -- l 2 ( 2 -l 0 2 ( 0 ) 0 2

E ' .. E

X[ 1 + k10(0)(iO 1) + E k; 0(0)(io 1)3 +- k6 0 )U02)3
6 6

+- k0i2O )(iO2(i02)] dO~d02, (12.112)
2

where ki1(0) M kijl0' k 1(0)E M ± killo.

After manipulation,
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I
p(z1,z2) = exp 12.. '2

2r2k 20  2k~2/I

X [2 k 10 HcH ( ZI ) + f

" Ho(x) -1
H 1 (x) = x 3
H 2 (x) xi-1

H+ (x) = H , (x)- H 2 (x) (12.113)

I
convention of (0) is omitted.

Under the assumption that z1(t) is narrow banded, the number of zero-crossings of 3
an output z(t) is equal to the number of maxima.

Therefore, the expected number of z--up crossings per unit time is given as already I
shown in Section 12.5, Eq. 12.44,

- I

'F'

H n+ I(x)] = xH- (x) -nH,z2•z2.x (12.114)
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Also, the expected number of mean level up-crossings is

E[N+(!j)] = � I 212 p(-i, z2)d2-. (12.116)
2 J

The probability distribution function of a maxima then lies above Z, is

P(z) EN+(z) (12.117)P~D=E[N+(T0] "

Substituting Eq. 12.113 into Eq. 12.115 and carrying on the integration gives

E[N+(z)]= -V2-exp

[ kio (z E ko H3 ( Z

× +-2o 2 6 k2oý- 720

+ k12  ( z (1
2 k F2o V7- (12.118)

As already shown in Eq. 12.111, the cumulants are calculated from the m,nth
ro)ment of response, and the m,n th moment can be expressed by using the frequency
functions and the input spectrum as some of the examples that were shown in Section

11.4. With the order of each term up to 0(e) taken into account, and with the spectrum

function, which is a real function, the cumulants can be written as follows:
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k E chlo E f s(w)) G2(i, - oodw3

k2 2 = f s(w) IGI(W)!2 dw

-:c1
=O h,02 = f (02s(w) JGi(o))ý2dw

k12  Eh12 = E f f (wJIw2 + 2w~ S(w)IS(W2)3

x [Gl(-0C) 1)Gl(-- w2)G2(( I, cu2) (219

+ GI(-(o)G*(-(02)G;(01,0)2)) dw)Idw 2

k3 Eh30 = 3c f f S(Wl)(SO)2)I

x [Gl(-w1I)G1(-W2)G2(W1 ,wJ2)

+ G*(w )G'(- (2)G;(Wl,(0)2)1 da.JIdw)2,

where *indicates a complex conjugate,

s(w) is the two-sided spectrum of input x(t),

G I(w) is the linear frequency response function3

Gi(w) f g1(r1)e--1(uIdr1,
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and G2(w , w2) is the quadratic response function

G2(W1, W2) = g2(TI, T2)e"-'r'-n- ldr2.

S-cc -00

3 Through these manipulations, Hineno obtained his expression for the probability
distribution function as

21+ E 0  ± + (12.120)I h h20  6h~0  h20  ) 2hWJh J

The probability distribution density function p(z) and the expected 1/n highest value
Tj/. are obtained from the relations

p(z) = -- P(z), (12.121)
dz

fJzp(z)dz c

i/, = = n z p(z)dz. (12.122)

f P(z)dz

If we use Eq. 12.120 for P(z) and consider that in real calculations, the smallness

parameter e is absorbed in the computation of G2(w ,w2) and does not appear explicitly,

I~z ( x 4-)[ h10  hy) h12  1
p~)=xp 2h20  h20  2h20  2h~ohO2  h2o

S2° 2ho2o 2} 96. z4. (12.123)

This is the final expression of the probability distribution density function of the maxima.
Using this expression, M. Hineno calculated the probability characteristics of the maxima
and minima of the waves that were treated as nonlinear with the quadratic response3I function, as shown in Eq. 9.10 in Section 9.2.1,

I
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S= TI

with the linear response assumed as G (c) = 1.

0I

0 1 2 3 4

r Fg. 12.13. Probabilit density fncton of the maxima of waves.
(From Hineno.67)

Figure 12.13 shows the probability distribution density function for maxima of the

waves compared with the experimental data by a certain research worker for model
wae with a wave spectrum that is almost of the Pierson--Moskowitz type. In Fig. 12.13, I

waves I

the + marks indicate the experimental data analyzed as nonlinear waves and the other
marks (A, 0) are experimental data analyzed on the assumption of linear waves, the solidi
line being the theoretical relations as linear for this model waves. Results computed by
Eq. 12.123 are shown by a dotted line, and the agreement with + sigps is quite good,
especially in the larger amplitude range, which is important practically. I

Figures 12.14, 12.15, and 12.16 illustrate the calculated results for nonlinear waves,
using a modified Pierson-Moskowitz wave spectrum with H113 = 11.6 m, To, = 16.1

sec as the input. From these figures, we can find the extent of nonlinearity of the waves
and also the effects of nonlinearity or the effect of the distortion of the wave forms on the
difference of the probability distribution function for maxima and minima. I

I
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Hineno" also calculated the relative motion of a semi-submersible in this kind of
nonlinear wave, assuming a linear response to the excitation by the waves.

0 . , - H,1 " 11.6m
Ta 1.61 sec I

Pý 0.6 - MINIMA

0.L - LINEAR0.4-'~,

0.2- I
0.J 2 34

Fg. 12.14. Cumulative probability distribution function of wave amplitude.
(From Hineno.67)

0.7
I. H1 13 11.6m0.6t /•Tox 16.1 sec

O~r- MAXIMA
0.5 1,'MINIMA

1/• -- LINEAR
U04 0.4

0.3-,

0.2-I

0.1

00n '0 l 2 3 4.

Fig. 12.15. Probability density distribution function of wave amplitude.
(From Hineno. 67)

12.7.2 Wide-Banded Case

J. F. Dalzell56 (1984) extended this technique further. He did not assume narrow
bandedness of the response and did not truncate the functional polynomials at n=2 but
continued to n=3. He thus formulated the technique for calculating the probability distri-
bution function of extremes of the nonlinear responses to Gaussian inputs. Here the
characters of the nonlinear frequency response functions up to degree 3 are assumed to be
known from the analysis as discussed in Section 11.5. The nonlinear response Y(r) to
Gaussian input X(t) is expressed by
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4.0 H1 5 1.r I 3

Hin= 11.6m

To, 16 .1 sec

-MAXIMA

MINIMA

3.0 -LINEAR

N
2.0-I

05 0 15 20n
Fig. 12.16. Expected 1/n highest values of wave amplitude.

(From Hineno.6 7) I
Y(t)= f gi(ri) X(t-'rl) 4drl

"+fJfg2(Ti, r2) X(t -'TO X(t - 2) dr1d'r2 3
"+ f1. f f3(T1,T2,T3) X(t-r 1 ) X(t-r 2) X(t-T3) drldr2dr3. (12.124)5

(Limits of integrals - w - + oo are omitted throughout this section.)

As was assumed in Section 11.5, here the kernels or the nth degree impulse

response functions gn(TI, T2 . . . r,) are real, time invariant, completely symmetrical in

the variables gn(rl,r2 . . . rn) = gn(r2,Y3 - . • .n, -r,) = ... for any rearrangement of the 3
variables -rj, and sufficiently smooth and integrable so that there exist n-fold Fourier

transforms, 1. . t,)=.TO 4 . 1 W 2 . . . ( n)
(27) If f f no1 ) n

nI

e R [iwirjid&wicw 2 . dw,, (12.125)

I
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n

Un
Ix 1G0(drw2 . . .~) ffn (12.126)r2..

I=
The function G,(to1,tw2 •. w• ) is the nth degree frequency response function and

is also symmetric in its arguments G(wt1, w 2 . . . o)) = G,(W2,w1, . ..a)= .... for
any rearrangement of wj because the impulse response functions are real.

Gn(-tW1 ,-to 2, . . . -(o,) = Gn(w1,w2 .W... Wn) (12.127)

3 here the * denotes the complex conjugate.

In Dalzell's paper,-56 the spectrum Sxx(to) was defined a little differently from those
used by this author in Parts I, I1, an, d MI. He used 2n tiues ours(wo),

Sx.(0j) = 2Jrs(O), (12.128)

5 and also took the one-sided spectrum
1

U,41[w I] = 2s(aw) = -St(w), forw0 > 0. (12.128')

The initially assumed functional polynomial process was reformulated as the
response to a white noise excitation, and a new set of frequency response functions was
defined which contains both characteristics of the original frequency response to the
excitation and that of the excitation spectrum.

The two-sided spectrum of white noise is
Sww(t) = 1, (12.129)

3 and the autocorrelation of white noise is a delta function

Rww(r) = J exp[iwr]dw = 6(r). (12.130)

We think of the spectrum filter L(w) that expresses the spectrum of input S=(W)
with the white noise as

S,(o) = a2 IL,(()1 2  (12.131)

3U
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L~w) -(121.131V)

The linear, quadratic, and cubic frequency response functions connecting the white

noise W(t) with the output Y(r) will beI
ca.H 1 (o) = a.,L(ow)G(o))

axH 2(0)1, w2) (0 u~~ 1)L(0)2)G2(601, W2) (212

arxH3(0)1, w20w3) = arxL(w1I)L(0w2)L(w)3)G3(0w1,0w2,0w3).

Then Y(t) can be related to the white noise input W(:) as

Y~)= a.! f hj(rj)W(t-T1j)drj

+ uO Jf h2(r1, r2)W(t - TO U- T2)dT~dr2 5
+ Or' f I J h3(r1,'r2,r3)W(t-TI)W(t-T 2)W(t-r 3)drldr2dr3, (12.133)3

w ee hj('r j) = 1~ H j(w))expliw rij~dw

h2(r1, T2 ) = 2 1 JH 2 (0)1,0) 2 ) exp[i(w 1r, +C0)2?2)]dW IdW2  (12.134)

h3('rl, r2, r3) = ) f1 H3(W 1, 0)2,0)3) eXPUi(w IT + o)2T2 + w3z3)]dw Idw)2dW3.

The derivatives of the output are then

k~)= o.,fhi~rilW(t-rj)drj

a.2 f hý(rj, r2)W(t - r1 )W(t - T2)drjdr2 5
111. h3(rl,r 2,r3)W(t-ri)W(t-z 2)W(t-rT3 )dridr2dr3, (12.135)

where3
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hj~rj) H1 (w)exp(iwrj)dw

h(lr23r 1 2(W 1, W)2) exp[i(wo jr + W2r2 )]dwo 1dO2  (12.136)

h;(r,,=2I I f 1-1(0),0)2, 03) exp[i(w lr + W2T2 + W3r3)]dW d
(2.7r) 3 fff2w3

The terms H.(w) are defined as

Hi1(w) = ioH1 (o))

H12(W 1, O2) = i(wi + 02)H2((w1, W2) (12.137)

143(0) , W2, 0)3) = i(W 1+W2 + W3)H3(W 1, 02,0)3)

and

Y(t) = ug. f hi (r1)W(t -,rl)dr,

+,Cr.2 JJ f 2 (Til, T2)W(t - ri)W(t - T2)drldr2

f f ff 23 (r1, T2, r3)W@ - T1)W(t -r2)W(: - 3 )drldr2dr3, (12.138)

where

11

K2('lr2 =(2.1)2 ff 02 ((o1, o)2) exp[i(w) iri + W2 r2)]dCw11d02  (12.139)

K3 ITr,3 = 1 f3(WI0)1,2,0)3) exp[i(o1'rl +o)2r2 +o) 3r 3)jdw) dW2do.3,

and Ri. are defined as
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nil (w) = - 2'H 1(0) 5
R 2 (0)1,0 2 ) =-(&1 + O 2 )2H 2((0 1,( 2 ) (12.140)

Hl3 (0)1,(02,O)3) =-(Wi +w02 +(03)2H 3((01,W 2,W3).

In addition, the characteristics of the products of white noise were fully utilized as I
follows:

Wl(t -1)W(t -r2) . . . W(t-1-N) =" 0 for N odd, I
WO - 6W(t - -12) = 612, 3
W(t - 11)W(t - r2)W(t -' 3)W(t - 1r4) = 612634 + 613624 + 614623,

W(t - 11)W(t - r2 )W(t - 1r3 )W(t - 'r4)W(t - 'r5)W(t - 1T6)

= 612634656 + 612635646 + 612636645 (12.141) 3
+ 613624656 + 613625646 + 613626645

+ 614623656 + 614625636 + 614626635

+ 615034626 + 615532646 + 615636624 1
+ 616634652 + 616635642 + 616632645, 1

where 6ij = 6(r-i - 1:j).

Eq. 12.141 is the special case of Eqs. 11.68, 11.69, and 11.70 in Section 11.5.
If we do not assume narrow bandedness of the output spectrum, the expected

number of maxima of the response Y greater than Y = • per unit time is approximated as

Go 0
N =f f lil p(Yo, k,) rddY. (12.142)

S-CO I

Similarly, the expected number of minima of Y less than Y = • per unit time is
approximated as

3
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Jý= ffM p(Y,0,Yk)dA dY. (12.143)

W- 0

Then, the expected number of maxima regardless of magnitude per unit time will be

NW= f f M p(Y, O, ) A ddY. (12.144)

-00 -00

Similarly the expected number of minima per unit time will be

N•O = ffiop(Y ,0, k ddY. (12.145)

-W 0

Because maxima and minima are paired in the same record of response N,+ = NM,
from Eqs. 12.142 and 12.144, the probability that a maximum will be less than 4 is ap-
proximated

Prob[Maximum 1 1- .. (12.146)

Similarly,

Prob[Minimum 5 ] (12.147)

Then, the probability densities of maxima and minima are obtained by differentiat-
ing Eqs. 12.146 and 12.147 with respect to 4, as

0

p+(4) = J Ill p(4,O,Y) dk (12.148)
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P ) lý p(ý,0,• arY. (12.149)

0

In the same way as we did for the joint probability density p(Y, k) in Section 12.7.1, 1
relations between the joint moment generating function 0(it, it, i') and the joint cumulant

generating function K(it, ii, if) were used to give I

00it, it,ii) =f ff p(YY, ýXp [ity + itY+ id]l dY dY dY

1+ Ix km (it' (ii)k (i (12.150)
jkm k! m!

Here ujk is the joint moment I

Ai j= 17y" =f f f y*kmyp(yY,kk) dY dY dY (12.151) 3

K(it, ii, i') = log 0(it, ii, it') = I kkm- (it)- (-)k () (12.152)
Jk. j"k!m!

Therefore g
O(it,ii,if) = exp [K(it,ii,dii)] (12.153)

wherej, k, and m are positive integers whose sum is greater than zero. Therefore, the I
inverse transform of Eq. 12.150, from Eqs. 12.150 and 12.152, is

II
I
I
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p(Y. Y, Y) f... f ffexp O lule(it, a, ft) dt, didi

(2.,r) 1t

I~) f exp [P ~i: - il/i - &y} ex [K(i t, iit-)Id, i di' id

-7{k 2 W2+ ko2Oi-j+ koo0 "+ 2k, 10ti+ 2ko0 ti+ 2kol Ii}

+ ( 1 k m dit, di: (12.154)

Here], k, and m are now positive integers whose sum is greater than 2.

The relations between joint moment and joint cumulants are

kloo = ,tlOO

kolo = I1zo0

koo01 = PO

k2o = variance of Y (12.155)

k=20- variance of Y

koo2 = variance of Y.

Nondimensionalizing the variables as follows

z = (Y- k1oo)kl"

z = (Ykolo)kg0 (12.156)

-- (ykOOl)k

and
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"$" =: 3'2
S- t/ (12.157)

2

and kjkm

1n= (12.158)

TSý f Jf ef I-isz-i] 3

3
2 IFI

+ I Zjm(isY (ii)k (ii)"m ds ds di. (12.159)
jkm3

Expanding the characteristics of the moments as shown in Eq. 12.159 into joint
moments and modifying them into joint cumulants, Dalzell derived the expression for
joint cumulants until the fourth degree from the modified frequency response character-
istics HI(o)), H2(0ox 2), H3(w1,WZW 3), and functions of w by the same type of style as

Eq. 12.119 for the case of p(z, i). Since these manipulations require many transactions 3
involving the higher order terms in the expansions, he checked the order of magnitude of
the functions, suggested the order to truncate the approximations and, by laborious
manipulation utilizing Hermite polynomial, he obtained his approximation. I

From these expressions, arbitrarily denoting the standardized maxima or minima of
response by v he finally derived the expression for p(v, 0,Y) using the cumulants up to
the fourth order and then the probability distribution function for maxima and minima by

p v)= - fil p(v, O, ) di"

-I
0

= -.-- J ip(v,O,i)di (12.160) 3

I
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I1
p-(v). p(v, O, )d

0

N; -,p(v,O,')di .". (12.161)

Finally he derived the expressions for his first and second approximations p"(v),

pT(v) and p'(v), p-(v) as follows. First, by neglecting the term higher (than 3) order
joint cumulants, the first approximation is,

pp(v) = (2,7r) 1/2 exp 2,]+(1 --E)1/2

(12.162)

E V'2  _,21/ ( E12pJ(v) = (27)/ exp 2,E• -(-2 )/ v exp --- (2v1/ 
'

(12.163)

where O(a) is the Gaussian cumulative distribution function and E is the spectrum band
width parameter.

The E was introduced in Eq. 12.162 and Eq. 12.163 from the relations as follows that
comes from the characters of joint cumulants,

k,020 
(12.164)

(k200koo2)/ 2 =

_A-20 - 2. (12.165)

It is interesting to find that this first approximation, Eq. 12.162, is just the same as
the one that Cartwright and Longuet-Higgins13 derived as shown in Eq. 12.49, and Fig.
12.1 in Section 12.5.
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Dalzell's final expressions, including the effect of higher order cumulants (until 3)

that take account of the higher order nonlinear response until the third order, are I

exp -1'

7r) 1/2
-R~,E ( - 2)1/2  1.2-+ ~Lv(- c2 )1/2] 2171

HereI

S(v, E) =1 + v exp - + (12 .6

P2(V)+E =e 4 SoO3( 0-E(Z) /

+-1/2 V+ 20  2 )(1-E2)1/2-Al2 o] I

+- E--T,
- v 3 o ( -x-(12.168) 

I

I
I
U
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R(v,Ec) v 1+ [120+ A201 + 3A30U]

+12[..12 _Z A~201 -_64 300]

2)/

+ V4, 300, (12.169)

where e is the so-called baud width parameter, as Eq. 12.165.

As referred to in Section 11.5, item 6, Dalzell 56 generated the simulation data of the
cubic nonlinear response to check the validity of his tri-spectrum analysis17 for the
Gaussian excitation of the waves, as expressed by the Moskowitz-Pierson type spectrum,

Ui) a -x [.25~()

U5Crjo5 exp I- ) (12.170)

where U,,(w) is a one-sided spectrum, 07' is the specrumn area and variance, and wo is the
modal frequency.

Using the same spectrum parameters for nonlinear response as he used before17 and
varying the excitation level by changing a, toa, = 0.125, 0.25, 0.50, 0.75, and 1.0, he
obtained results for simulated data averaging 10 samples for each case.

He calculated the probability distribution of maxima and minima and compared his
results with Eqs. 12.162, 12.163, 12.166, and 12.167.

Figure 12.17 shows the comparison of probability distribution densities of response
maxima and minima estimated for the simulations with those of the first and second
approximations from Eqs. 12.162, 12.163, 12.166, and 12.167. Here: represents the
normalized maxima and minima and was equal to v-211o, 11oo being the normalized
mean and v the standardized maxima and minima as appeared in Eqs. 12.162 through
12.167.

Figures 12.18 and 12.19 compare cumulative distributions of response maxima and
minima estimated from the simulations with those of the first and second approximations.
In these two figures, the standard deviation of input a, ("SIGMA") is the same, and the
band width parameter, E, ("EPSILON") was different. Here the first approximation is ex-
pressed as a straight line (the scale of the cumulative probability is so chosen) and is
marked as the fitted distribution.

These figures indicate that the final expression for the second approximation gives
excellent results that check the simulated results very well.
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-SECOND APPq0OUA1IONI
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Fig. 12.17. Comparison of densities of response maxima and minima 1
estimated from the simulations, with those of the
first and second approximations. 3

(From Dalzell.s5 )
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Fig. 12.18. Comparison of cumulative distribution of response maxima and
minima estimated from the simulation, with those of the first
(fitted distribution) and second approximation - sample 1.

(From Dalzell.5 6)
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Fig. 12.19. Comparison of cumulative distribution of response maxima and
minima estimated from the simulation, with those of the first
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(From Dalzell.sr)
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CHAPTER 13

EXTENSION OF MODEL FITTING TECHNIQUES TO
NONLINEAR PROCESS

III 13.1 INTRODUCTION

Suppose we have a discrete random process Y, and a purely random process c,, and

4 is expressed by

X1 = QA(X1-1,X*-2, " X-.) + E. (13.1)

When QA is a linear function,

Xt = a, X-1 + a2 X-2 +"•• + a,, X + el, (13.2)

XY is called as an aatoregressive process (AR) of nth order, as discussed in Part HI,
Chapter 5.

If X, is expressed as

X = -,-2, Et-3, - + E, (13.3)

and Q.. is a linear function,

SXt = ble-I + b2 E.t-2 +. + b e-m + Et, (13.4)

then X, is a moving average model (MA) of m th order, also discussed in detail in Part 11,3 Chapter 5.

When these QA or QM functions are not linear functions but, for example, the poly-
nomials of X,..,, or e,,_, then X, is no longer a linear process and is called an expanded
AR model or an expanded MA model.

A Voltera type process, as we saw in Section 11.1 in Eq. 11.1, is this expanded
moving average process. More generally,

Xt = QA(Xt-i X,.. 2, Xt-0) + QM(Et-.1 ,Et-2Et--m.) + Et (13.5)

is an expanded ARMA model when QA, Qm are polynomials of variables.

For expanded AR, MA, and ARMA models, there is no general way to solve the
process. When the process is expressed as,

Xt+al Xt-.1 +a2 Xt-22 + ak Xt.k

n? VI IEt + bi el-1 +" " + bi ct-t + I I" ci t-i C"XI-J, (13.6)

i=lj=l
Eq. 13.6 is called a bilinear model. The scope of nonlinear models that have been analyti-
cally developed is rather limited. A few efforts have been made along the following
models: i) a simple bilinear model, ii) a threshold autoregressive model, and iii) an
exponential autoregressive model.

3
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13.2 BILINEAR MODEL

As the simplest example of a bilinear model, we take the first order model

Xt+l = aXt + bEt+l + cEXt (13.7)

Priestley,2 in studying the bilinear model, assumed thdt Eq. 13.7 can be expanded into
the form of Voltera functions, Eq. 11.8 as, 3

Xt I g gUt.- + I I g.v U'-.U'-V +' . (13.8)

U=O U40-01

Here, the general transfer functions are

U1w1  = 30~e'

r 2(to1 ,W2 ) = 3 3 g,.v e (13.9)
U-=OV=O

Assuming Eq. 13.7 is expanded into the form of Eq. 13.8, he derived rF (w), setting 3
= e"" in Eq. 13.7, as

beiW 
(3.0

I'i(el) = -a)I

Similarly setting E, = elt + eiW2t,

r 2(W 1, W2) = 2{e',F(W- { 1(wi) + r(wO2)}

+1cb 1 io 1i0f b . .e+----'• e° (13.11)

{ei(01+W2)-a} I e""l -a e&W2 -a(11)

Particularly along the diagonal w1 = W2 = 0,

r2(tW) = cbeiw (13.12) 1(e20 - a)(e" - a)

More generally, Priestley showed that I
ck-'b e . (3.3

rk(w, W) = (ei - a)(ei(k-l) - a) . . (eiC - a)

From these relations, he found that r I(wa1, w2) included all the a, b, and q of
Eq. 13.7. Thus he says, the bilinear process expressed by Eq. 13.7 is invertible to the
functional polynomial model of Eq. 13.8.

This bilinear model can also be approximated he says, by the generalized autore-
gressive model. The first order bilinear model can be expressed by setting b = 1 in
Eq. 13.7 (without losing generality),

I
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X,+, = aXt+cX, E,+Et+l. (13.14)

We can modify this equation to

I + cX, B}E+l- = Xt+1 -aX,. (13.15)

Here B is the backward shift operator. For small c, Eq. 13.15 can be inverted to

C = {l1 - c X, B }1X 1+j - aX4

-X1+1 -aXt_-cX, 2 + ca Xt X,- 1. (13.16)

This is a generalized autoregressive model. If the product term XA X_ 1, is neglected, initial
estimates of a and c can be obtained by a least squares approach. If the product term is
not neglected, a nonlinear least squares approach can be used to get a and c. After initial
estimates ao and 4o are obtained, it can be estimated by

E;+i -Xt+ -aXt-cX, ýt for t= 1,2, N. (13.17)

Recursively starting from Ct = 0, and using {X,, ^f} for t = 1, • N, new estimates for a

and c can be found to minimize

N
NZ -t-aXt- cXtit}. (13.18)

Until the estimates converge, this procedure is repeated. Subba Rao"9 studied this
bilinear model and gave several examples.

13.3 THRESHOLD AUTOREGRESSIVE MODEL

The threshold autoregressive model introduced by Tong 9° is generally expressed as

X, + a(i)X-I +' '+ a(l)_ = i*i) (13.19)

where a. a, are constants in Region R(i) for

(Xt--1, - " • X.-t) R(), i= 1,. - -k. (13.20)

Region ROi) is in the l-dimensic•n•L i2i clidean space R . For example, the first order
threshold autoregressive model TAR(l) is

( a1)_ +E(1), ft.

Xt a )Xt- 1 f (2) , (13.21)I~()t1+ . ifXt-i >- d

where the coefficient a differs by the size of XY.I. Priestley 23 indicates that, if we consider
a bilinear system in which the physical input Ut, output Xt, and noise et are related by

Xt+l = aXt + cU, X, +,Et+l , (13.22)

and if Ut is determined by a feedback mechanism of the form
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U -+a if Xt < d (13.23)

-a ifXt ad

then the model X, can be expressed by a threshold model

{aC1) X, + t+I, for X, < d (13.24)

X1+1 a(2) X, + E,4 1  for X, { d

where

a( 1)=a+a•- c (13.25)
a(2) a-a c.

This model gives a nonlinear process as shown by Eq. 13.22. It can be called a piece-
wise linear approximation. As will be shown later in Section 13.5, Ozaki9l made it clear
that this piece-wise linearization is a special case of his nonlinear threshold autoregres-
sive model.

13.4 EXPONENTIAL AUTOREGRESSIVE MODEL U
The nonlinear random vibration system of one degree of freedom is expressed as

X(t) + g91f(t)} • i(t) + g2{X(t)} X(t) = n(t) (13.26) 1
where n(t) is a random noise excitation.

When 3
X(t) = Y(t), (13.27)

Eq. 13.26 becomes -

YQ'() = -g 2{X(t)} Xt) - g1{X(t)} Y(t). (13.28)

From these two equations and the state space expression as explained in Section 12.3

EX.(t) ][0 1(] [x3) [ 13029
Y()J=- g2{Xt)(t) -Jt)} Y(t)J [n J (.2)

or, in vector notation, '(t) = f{X(t)I V(t) + n(t), (13.30) 1
where

VW)= [x ]X(t)])p (13.31)

So, finding the appropriate expression for gl(.), g2(') in Eq. 13.28 is the same as finding

the appropriate function f{X(t)} for Eq. 13.30. When these two functions g1('), g(2) are in

I
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the special forms as follows, the system is called a Duffmg type or a Van del Pol type
oscillator, respectively, as described in Chapter 10.

Duffmg type:

g94(t)} C

g2{X(t)} = a + #X2 (13.32)

Van del Pol type: gIX( t)} - IX(t)2 I

U g2{X(t)} = a. (13.33)

For the Duffmg type oscillator, under harmonic excitement F cos w t,

Xk(t) + cX + aX + #X3 = F cos wt. (13.34)

I We know that, with harmonic excitement, the response shows damping phenomena,
as indicated in Fig. 13.1, and in this case the natural frequency is dependent on amplitude.
So we can call this oscillation an amplitude-dependent period shifting oscillation.

SOFT SPRING TYPE

HARD SPRING TYPE 0~

I 
L-

3 Fig. 13.1. Duffing type oscillator.

For the Van del Pol oscillator,

X-c{1-X2}X +aX=0, forc>0,a >0 (13.35)

I the system possesses a limit cycle, because when the amplitude X is small, the damping
becomes negative and X starts to diverge, and when X(t) becomes large, the damping be-
comes positive and the amplitude starts to decay. This system remdins in oscillation
without any excitation.

When we have random noise excitation n(t)

I
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X - c(1 -X 2 )X + aX = n(t), (13.36)

the system will produce a perturbed limit cycle.
Ozaki 91 -9396 ' 97 and Haggan and Ozaki9%,95 proposed a new type of nonlinear model

called an exponential autoregressive model through the following considerations In Eq.
13.26, when g, and g2 are constants, the system becomes a purely linear oscillator and the
equation of motion is expressed as

S+ cX + aX = n(t). (13.37)
This expression can be inverted into an ARMA(2.1) model, as was explained in some

detail in Section 6.3.2 of Part II, as

X, = 0' IX,-I + 02X,-2 + OEt-I + Ct. (13.38)

Here n(t) is a continuous Gaussian white noise and Ef is a discrete Gaussian white noise.
The oscillation expressed by Eq. 13.37 is governed by its characteristic equation, as dis-
cussed in Section 6.3.2,

Ip2 + y+ a 0 (13.39)I
and by its roots (or eigenvalues)

C
2L ± -(/) (13.40)I

We know this model Xt diverges when c < 0 and converges when c > 0. On the other
hand, the model expressed by Eq. 13.38 diverges when the roots of its characteristic
equation

2 - 0,1z- 02 =0 (13.41)

are outside the unit circle and converges to a stable process when two roots of Eq. 13.41
are inside the unit circle, as described in some detail in Sections 5.2.4 and 5.2.3 and in
Fig. 5.16. 3

From Eq. 13.41, when 02 < 402, i.e., when the roots are unequal and complex
(conjugate to each other) zone [ II ] in Fig. 5.16, 1

Z=i -4 2- , (13.42)

2 2

since Il 2 =02, when-02 > 1 or02 <- 1, thismodel diverges and when 1 >-0 2 >0or I
0 > 02 > - 1, this model becomes a stable process.

From the discussion of Green's functions of ARMA(2.1) in Section 5.2.4 or of the
autocorrelation of AR(2) in Section 5.2.3, we know that damping is determined by

-,1 C2, i.e., by 02, and the frequency is dependent ono1 .

In the analysis of a ship's nonlinear rolling that comes from the nonlinear restoring I
moment (the Duffmg type), Ozaki and Oda92 first fitted a nonlinear model of the type

Xt- 1 Xt-1 +0 2 Xt- 2 +,r X3-1 +Et. (13.43) 3
I
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Equation 13.43 can be transformed into

I X, = (01 + X X2,-1) Xu-1 + 02 X,-2 + Et. (13.43')

This expression shows that the coefficient of X,_, the first autoregressive coefficient,

changed from~1 in Eq. 13.38 to(• 1 +•;r Xý_I) in Eq. 13.43'. This means the frequency.

determined by the coefficient of X,-,, became amplitude dependent. Although this looks
fine, Ozaki and Oda found that the time series X1, defined by the nonlinear autoregressive
model Eq. 13.4' was not stable but could be diverged. Therefore, instead of Eq. 13.43,
they proposed

Xt = (0 1 +;1le- ,-2) Xt.- 1 + 0 2 X--2 + et. (13.44)

This is the exponential type of autoregressive model for a Duffmg type oscillator. By ex-
pressing it this way, we can make both roots At(O), A(O) of the instantaneous characteristic

equation, when X,-, = 0,
IA22- (01 +;I) - 02 = 0 (13.45)

and also the roots A( cc), A(mc) of the instantaneous characteristic equation when

X-2 x1, W = 0 (13.46)

lie inside the unit circle as shown in Fig. 13.2. Accordingly, with Eq. 13.44 as the model,
we can express the amplitude-dependent and stable oscillation under white noise oscilla-
tion excitation.I

1.0

I

i. -1.0

Fig. 13.2. A(0), A( (c) for stable Duffing type model.

I When x, > 0, the model corresponds to a hard spring system and when ;,r < 0 the
model corresponds to a soft spring type oscillator. Haggan and Ozaki (1979)94 and
Ozaki97-99 showed an example of this type as

I
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Xt = (1.5 + 0.28 e-x-C ) X,. 1 -0.96 Xt-.2 + c (13.47)

where 02= 0.025, namely e, is N[0, 0.025].

The eigenvalue ,A stays U12 0.96 for 250 !5 Arg. (A) -< 40 0, and actually

moves between A;o = 0.89 ± 0.41i and A , = 0.75 ± 0.63i when IX•.II changes between I
0 and c as schematically shown in Fig. 13.2. The generated time history is shown over
r = 1-100 in Fig. 13.3. To check the characteristics of this model expressed by Eq. 13.47,

the model

X, = (1.5 + 0.28eX'-h) X,-11-096 Xt-2 + a, (13.48)

was simulated,l°° where a, is no longer random but is the form at = sin{2 fit). t], where I
the frequency fit) changes with time.

o i

0.00 100.00 200.00 300.00 40b.00' 500.00 600.00 700.00 800.00 900.00 1000.00

Fig. 13.3. Generated exponential AR model
X, = (1.5 + 0.2 8 e-'X) X., - 0.96X, + i,, E,: N[0, 0.025].

(From Ozaki.98)

Figures 13.4 and 13.5 show these simulations. In Fig. 13.4, the frequency fit) 3
increases with time from 0.005 to 0.1, and in Fig. 13.5 the frequency flt) decreases with
time from 0.1 to 0.005. In Fig. 13.4, the amplitude suddenly becomes small at around
f= 0.062; in Fig. 13.5, the amplitude changes abruptly at aroundf= 0.052 and actually
demonstrates the jump phenomenon shown in Fig. 13.1.

In the same way, by making the damping amplitude dependent, Ozaki,93,98 proposed
the model for expressing the Van der Pol type oscillator as

Xt = 0lXt-1 + (02 -+ . 2 e-2CX") Xt2 + E 1 (13.49)

or, more generally,

Xt (I +.7t 1 e- ,') Xt, 1 + (0 2 +Z 2e-X-) Xt_2 +El. (13.50)

I
I
I
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INPUT at

"0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 80o.00 900.00 1000.00

8- OUTPUT X,C6

0.00 100.00 200.00' 306.00' 400.00 500.00 600.00 700.00 806.00 900.00 1000.00

Fig. 13.4. X,= (1.5+0.28e-x•1) X,._-0.96X.2+ a,

Input at = sin{sinr x 4; q(t) is increasing by time.

(From Ozaki.98)

In Eq. 13.50, the coefficients l,0 2, xl,:t2 are to be chosen to make the damping
coefficient negative, when the amplitude Xt-I is small and the oscillation starts to diverge,
and to make the damping coefficient positive, when the amplitude X•-. is large and the
oscillation starts to decay. Mathematically

2_ (02 - + X2) =, (13.51)

has roots outside the unit circle, and

1 t2_-0, -02 =0 (13.52)

has roots inside the unit circle, as shown schematically in Fig. 13.6

387



(0 INPUTat

0.00 100.00 200.00 300.00 400.00 500.00 800.00 700.00 800.00 900.00 1000.00

o ~OUTPUT Xt -

110 0....... A o

.0' 160'2b0'0.046o'500 60.0 o.o86o.qbo ooo

F ig 1 3 5I,= ( . .8 s -) X . .6 , 2 + a
Inputa, ilA44 -ý; 0 sM dcrasigbytm e.V P

(Fo0zad9)
Asa0xmlOaisoe ht o oe

Fi.1..X, = (1.9 5 + 0.23e es-2') X, ..1 -(0.95 6 .2 X2 + 1- +af (3-3

the characteristic roots are A0 = 1.09 ± 0.109i and ;., = 0.975 ±0.0968i, and 1X12

actually moves between U01 = 1.20 to LZ . 2 = 0.96, which shows Van del Pol type
oscillation, as shown schematically in Fig. 13.6. Figure 13.7 shows that the model
without e t, which starts with different initial values, approaches to the same limit period.I
Thus this shows that the model expressed by Eq. 13.53 has a stable limit period.

1.0I

- x ; (0)

-1.01.

Fig. 13.6. A(0),A(w) for Van del Pol type model.I
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FIg. 13.7. X, = (1.95 + 0.23e •1)X. -(0.96 + 0.24e--'-,)X,, with different
initial values (without white noise).

(From Ozaki.98)
More generally, Ozaki98 proposed the higher type Duffing and Van del Pol nonlinear

S~ model as

X = g 1 (X,-1) X.-1 + g 2(X.-1) X.-2 + Et, (13.54)

where

iI g1 1 (1 ))Xt+l + ,(1)X2 + +Z. _ (, 1 Xe2, (13.55)gl(x,.,0 = 01 + (46o + X1 , X -I .X -,-1+ )

(2Xl 2 ) ( 2)~ (2) . +,)Xr±ie-X-2 (13.56)
g2(XI-1) = 2 + :) + X(),I+J2 "x - + a

The term g(-) is expressed by a constant plus a Hermite type polynomial. When
r = 0, r2 = 0 in these equations, an equation of the type of Eq. 13.50 is obtained.

To determine the order, Akaike's criterion (AIC) was shown to be applicable for
these nonlinear models, too.

13.5 NONLINEAR THRESHOLD AUTOREGRESSIVE MODEL

Ozaki99 extended and generalized his model further and proposed his nonlinear
threshold autoregressive model and a unified explanation of the nonlinear models.

For example, the exponential autoregressive model that he ,,sed as an example of a
Van del Pol type nonlinear process, Eq. 13.53,

X= (1.9- + 0.23 e-X-1) Xt- 1 - (0.96 + 0.24e-I,-, ) X,-2 + Et

was shown to be approximated by Tong's linear threshold autoregressive model, as

SXt={ 1.95 Xt 1 -- 0.96 Xt-2 + cr if Xt.-11 -->0.5
2.18 XI-. 1- 1.20 XI-2 + Et ifX LY-11 <O.k. (13.57)
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The characteristic roots of the model jump from iio[ .0 12 = 1.2 ] to

A.,[ I1).1 2 = 0.96] or vice versa as in Fig. 13.6 and also shown by a step function in 5
Fig. 13.8. While in the model as is Eq. 13.53, the path of two roots.ýo andA. and A at
arbitrary X,ý- 1 is specified by a continuous Hermite-rype polynomials in the equation, as is
shown by a continuous curve in Fig. 13.8.

1.23

0.96

-1.0 -0.5 0 0.5 1.0 X

Fig. 13.8. Path of characteristic roots of threshold model and U
exponential AR model.

(From Ozaki.9)

Ozaki argued that the threshold linear AR model, however, could not be expected to
give a good enough approximation to nonlinear vibration, and appropriate nonlinear
threshold AR model must be formulated. His point is, we have to consider the stepwise
dynamics of restoring and damping force, but at the same time, the orbitally stableness
and independence of the limit cycle of the Van del Pol equation must be maintained.

Instead of the linear step function approximation, nonlinear approximation 3
considered was as follows.

{1.95 X,_ 1-0.96 X1_7 +ct, for LX, 4 l > 1.0
X, = (2.18 -0.23 X2,1) Xj_1 -(1.2 -0.24 X12_1) X,-2 +E,,

for LX,1_11 < 1.0. (13.58) 1
Equation 13.58 can give the characteristic roots that move much more smoothly than
those of Eq. 13.57. Thus, the general form of the nonlinear threshold autoregressive mod-
el for nonlinear vibrations was proposed as, 5

X1= {f iXt-1 + • •.. + OP X, + C, forfXt..ll > T (13.59)
weefl(Xt-1) X1_1 +" • "-+ fp(Xt.-p) Xt-p +,Et, for [Xt-11 < TI

where

fm = 00) + X('.' 

3

Schematically, the behavior of the characteristic roots for (1) linear threshold model,
(2) nonlinear threshold model, and (3) exponential AR model are expressed as shown in
Fig. 13.9.

3
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(1) LINEAR THRESHOLD AR MODEL (2) NONLINEAR THRESHOLD AR MODEL (3) EXPONENTIAL AR MODEL

I Fig. 13.9. Schematical expression of behaviors of characteristic roots
by Ozaki.99

Ozakie00 investigated the stability and existence of limit cycles and their relation to the
form of the characteristic equation. For example, he showed that a nonlinear threshold
model,

X- 0.8 Xt-1 + E, for IX,.t_ >1.0

= (0.8 + 1.3 Xl2_i - 1.3X4 ) Xt-i + Et, for IXt-l < 1.0 (13.60)

has characteristic roots that behave as shown in Fig. 13.10. This model also has three
stable singular points and gives a process that fluctuates around one of these points and
jumps from one stable singular point to another, depending on the white input, as shown
in Fig. 13.11.

With these discussions and examples, Ozaki showed the greater generality of his
exponential models.

1.125

0.8

-1.0 0 1.0

I
Fig. 13.10. Behavior of characteristic roots of a

nonlinear threshold AR model.
(From Ozakl.•)
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Fig. 13.11. Time history of a nonlinear threshold model that has I
characteristic roots that behave as Fig. 13.10.

(From Ozaki.L9)
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CHAPTER 14

CONCLUSIONS FOR PART M

The so-called "spectrum correlation method" discussed in Parts I and II has been
shown to be a powerful way in the analysis of stochastic processes, but only when the
processes are linear. Many steps in the manipulations in Parts I and B are based on the
assumption of linearity of the process.

In the analysis of seakeeping data, as is usual in the general engineering field, many
phenomena can be approximated as linear, and so spectrum or correlation analysis has
played a significant role in advancing the technique of handling those data. Now,
however, the nonlinearity of seakeeping data for ocean vehicles and structures has
gradually been introduced, as mentioned in the Introduction.

Here in Part III of this lecture, methods for treating the nonlinearity in the stochastic
process analysis were summarized and reviewed. The conclusions obtained here are as
follo-ws:

1. Several works on the effect of the nonlinearity of ocean waves on its spectrum
were reviewed, It is now clear that, if necessary, we can get the effect of nonlinearity on
its spectrum as well as on the probability ditribution of the maxima and the minima of its
amplitudes. It is also clear that the nouminearity of ocean waves is usually quite small.

2. Even when the noplinearity of the waves is small, the response of ocean vehicles
and structures might be nonlinear, because of the very low frequency characteristics of
their responses that respond rather se- erely to the higher order nonlinear excitation by
waves or because of the nonlinearity in their response characteristics. For these cases,
when the nonlinearity is weak and the response characteristics are expressed by weakly
nonlinear equations of motions, the equivalent linearization and perturbation methods can
be applied if the excitation is approximately linear. The perturbation method was applied
by this author rather early to ship's oscillation, and now both methods are well formulated
as shown in Chapter 10. These methods are applicable to obtaining the first approxima-
tion of weakly nonlinear damping and restoring oscillations under random excitation. To
proceed to the second or third order approximation is, however, not necessarily easy.

3. The Voltera or functional expansion is one appropriate way to express the weakly
nonlinear response to random excitation, and the polyspectral analysis is a reasonable
way to get the higher order nonlinear frequency characteristics. The procedure for this
analysis was summarized in Chapter 11.

4. Recently, J. F. Dalzell has engaged in significant efforts on polyspectral analysis.
He tried not only bispectrun but even trispectrum analysis in the study of seakeeping in
irregular waves, with excellent results, although an enormous amount of careful computa-
tion was necessary which at this stage might not be feasible for practical purposes.

5. Probability distribution of the maxima and the minima of the oscillatory motions
can also be obtained from the nonlinear frequency responses. The general procedure for
obtaining the probability distribution of extremes by calculating the cumulants related to
the nonlinear frequency response characters and a few other examples are reviewed in
Chapter 12.
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6. If the process can be inverted into a vector Markov process by state-space trans-
formations, sometimes the solution of Fokker-Planck equations can be used to estimate
the joint probability distribution function, from which many probability characteristics of I
the original process can be derived, even for nonlinear oscillations.

7. Recently, a few applications of this approach have appeared in seakeeping
studies. However, the Fokker-Planck equations have been solved only for some limited I
cases, and are not so familiar to engineers. More studies are necessary for naval architects
to become familiar to the application of this method.

8. Some efforts have been made to expand the model fitting method to the nonlin- I
ear process. The threshold autoregressive model, the exponential autoregressive model,
and the Ponlineaw threshcld model are examples of expanded models. Some of these mod-
els loolL promising and some are under active development, but we will have to wait until I
they are more fully formulated to accumulate experience in application to practical
problems.

As was mentioned in the Foreword, the contents of this report were summarized at
the time of this author's oral presentation at DTRC in July 1985, reflecting the state of the
art up to 1984, though the written version was completed in August 1987. After these
dates, the state of the art has made considerable progress, especially in the field treated I
here in Part aL and this author finds the 'review,' and this conclusion, to be insufficient
because of the recent works of several researchers. In order to update the report, this
author added a Supplement of References 101 through 124, listing publications that have I
appeared since 1984, together with some other publications that were not referred to in
the original manuscript. 3

I
I

I
I

I
I
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CHAPTER 15

CONCLUSIONS FOR PART I THROUGH PART III

Part I of this lecture note summarized the conventional procedures for analyzing the
irregular time histories of observed data, like irregular ocean waves, and the responses of
marine vehicles and structures on the ocean, that can be treated as weakly stationary er-
godic stochastic processes. In these analyses, the so-called Wiener's general harmonic
analysis technique plays a large role, and the correlation and spectrum functions of the
processes were important and included much information on the characteristics of the
processes. When the responses of some dynamic systems to random excitation are to be
treated, the cross relations of the input (excitation) and the output (response), i.e., the
cross correlations and cross spectra, are very important.

The theories of the analysis are complete and rather beautiful. However, in sample
computations from practical data, that is, from discrete data sampled at some time inter-
val of finite length, many statistical considerations are necessary in estimating the
correlation and spectrum functions to get statistically reliable results. After the general
procedures were summarized, the discussion concentrated on that point. In these proce-
dures, this author made several suggestions for improving the reliability (actually the
coherencies) and these results were summarized. This author stressed that we should pay
more attention to the time-domain characteristics of the functions. For example, the cor-
relogram, that is the diagram of the correlation function and is a function in the time
domain, deserves as much attention as is now paid to the spectrum.

Part 11 is concerned with the parametric analysis of a stationary process, which is
really an alternative or more modem method for analyzing the sample random process.
This author believes that the characteristics of the function in the time domain play bigger
roles in this method than in the nonparametric conventional method, discussed in Part I.

The parametric method fits a statistical model to an observed process and estimates
the parameters from the observed data. In Part II, the autoregressive (AR) models, mov-
ing average (MA) models, and mixed autoregressive moving average (ARMA) models
were introduced. Since these models and the parametric approach are not familiar to most
engineers, especially in the field of naval architecture, the author explained them in con-
siderable detail. (He is afraid it was in too much detail.)

Usually a moderate or rather low order finite AR(n), MA(m), or ARMA(n,m) model
can be fitted to represent adequately most of the observed processes. The optimum order
of these fitted models, n or m, can be estimated by a method called Akaike's information
criteria (AIC). This method is based on information theory and enables one to choose the
order n or m that maximizes the statistical entropy of the estimate. It is therefore called
the "Maximum Entropy Method," although it is different from a similar method already
published under the same name. The AIC method can give the optimum order to be
adopted. In Part 11, in explaining the characteristics of these models, this author generated
several fundamental models, the AR(O) (pure random), AR(l), AR(2), ARMA(2.1),Iw MA(2), MA(l), and ARMA(2.2) models, by simulation and analyzed them by the para-
metric method. The orders were estimated by AIC and, for almost all processes, we
succeeded to fit models that coincided with the models used to generate the simulated
process. In these demonstrations, the simulated processes were also analyzed by the
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nonparametric conventional method (sometimes called the correlation method, or the
Blackman-Tukey, BT method), and the spectra were compared with the ones obtained by
the parametric method. From these comparisons, we can get an idea of the characteristics I
of the parametric method. Although they could have very steep peaks, the spectra from
the parametric method are smooth, and are free from the erroneous smoothing (blurring)
effect of spectral windows in the nonparamemc method. They are differently effected by
the statistical fluctuations of sample estimation that come from the finiteness of discrete
data.

Examples of results obtained by applying this parametric method to the analysis of 3
seakeeping data for marine vehicles and structures were also given to demonstrate the
usefulness of this approach in this field.

This author concludes that although this parametric approach is not the ultimate I
method of course, it is very promising, gives reliable results, and offers a supplement to
the nonparametric method explained in Part I. The nonparametric method is, in a sense, a
method for estimating infinite or very large number of parameters from finite data, or for I
estimating their spectrum or correlation functions. The parametric method on the other
hand is a method for estimating a finite number of parameters for the same purpose.

The characteristics of a dynamic system, which is usually assumed to be determinis-
tic, must be approximated by a finite number of parameters because the system is usually
governed by equations of motions with a certain finite number of parameters. The types
and also the order of parametric models are closely related with the order of the equations I
of motions, so the parametric method can be presumed to be more reasonable in the anal-

ysis of response characteristics.

In Parts I and II, the processes were assumed to be linear. In Part M, the method for I
treating a nonlinear process was summarized and several methods, such as the lineariza-
tion method, the perturbation method, and the Voltera expansion method (polyspectra
method), were reviewed and the relations of these methods to each other were described. I
Then, in relation to the probability distribution of the extreme amplitudes of nonlinear
processes, the application of the Fokker-Planck equation and some examples appearing
recently in naval architecture were introduced. The probability distribution of extremes of I
nonlinear response process were also related to the higher order frequency response func-
tions, and can be connected through the cumulant expressions. The general relations of
these functions were summarized. The achievements of J. F. Dalzell on the application of I
polyspectra and in the derivation of the probability distributions of extremes of seakeep-
ing data were introduced at length. At the end of Part Il, as an extension of the model
fitting approach treated in Part II, a few trials on nonlinear parametric models proposed I
by several statisticians were introduced. Some of these trials look promising and are still
under active development. However, as has been concluded in Chapter 14, we need more
experience with such applications. 3

3
I
I
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